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Eastern Test Range
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Florida Operations
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interrange instrumentation group
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Merritt Island Launch Area

Manned Spacecraft Center

Marshall Space Flight Center
outboard engine cutoff (S-I stage)
Operational Test Procedure
negative pitch

positive pitch

pulse amplitude modulation
pre-installation acceptance

pulse repetition frequency
postlaunch instrumentation message
Research and Development

reaction control subsystem
Saturn-Apollo
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Saturn launch vehicle, first stage
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A /A expansion area ratio, cross-sectional area at some point
t in nozzle divided by cross-sectional area at throat

D maximum body diameter

F thrust, 1bf

g gravitational constant

IXX moment of inertia around the X-axis, slug-ft2

IYY moment of inertia around the Y-axis, slug-fti

IZZ moment of inertia around Z-axis, slug—ft2

L* characteristic length

M Mach number

P pressure, lb/sq in.

a dynamic pressure, lb/sq ft

Upax maximum dynamic pressure, lb/sq ft

é heat flux, Btu/fte/sec

ReD Reynolds number, based on maximum body diameter D

RMS root mean square

T launch time, sec

X longitudinal axis of the spacecraft and launch vehicle

XA longitudinal location, referenced to the spacecraft, in.
(fig. 4.1-3)

XC longitudinal location, referenced to the command module, in.

(fig. 4.1-3)

X longitudinal location, referenced to the launch-escape
subsystem, in. (fig. 4.1-3)
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longitudinal location, referenced to the launch-vehicle
S-I stage, in. (fig. 4.1-3)

longitudinal location, referenced to the service module, in.
(fig. 4.1-3)

plane of the Y-axis passes through the X-axis and is per-
pendicular to the plane of the Z-axis, in. (fig. 4.1-2)

plane of the Z-axis passes through the X-axis and through
the center of the CM hatch and of fins I and III of the
SA-7 launch vehicle, in. (fig. 4.1-2)

angle of attack, deg

product of angle of attack and dynamic pressure,
(deg) (1b/sq ft)

Q-ball differential pressure

Flight test symbols, Saturn-Apollo: Saturn symbol within
Apollo symbol. Basic symbols: Greek and Roman.
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1.0 SUMMARY

The Apollo spacecraft mission A-102 was successTully accomplished
on September 18, 1964. The unmanned boilerplate spacecraft (BP-15) was

Taunched at 11:22:43 a.m. e.s.t.> into earth orbit from complex 37B of
the Eastern Test Range, Cape Kennedy, Florida, by the Saturn I Block II
vehicle, SA-T. '

The purpose of the test was to demonstrate the compatibility of the
spacecraft with the launch vehicle, to determine the launch and exit
environmental paramet<rs fTor design verifiecation, and to demonstrate
the alternate mode of escape-tower Jettison, utilizing the launch-escape
and pitch-control motors.

A1l mission test objectives were fulfilled by the tim= of orbital
insertion, and additional data were obtained by telemetry through the
Manned Space Flight Network until the end of eftective battery life
during the fourth orbital vass. Radar skin tracking was continued by
the nstwork until the spacecraft reentered over the Indian Ocean during
its 59th orbital pass.

During the countdown, there were no holds caused by the spacecrartt.
All spacecraft subsystems fulfilled their specified functions throughout
the countdown and the planned flight-test period. Engineering data
were received through telemetry from all but two of the Instrumented
spacecraft measurements for the full flight-test period of the mission.

The actual trajectory at time of S-I stage cutoff was slightly
higher than planned in velocity, altitude, and flight-path angle. At
S-IV stage cutoff, altitude was slightly lower and velocity was slightly
higher than plenned, which resulted in a more elliptical orbit than
planneg.

The instrumentation subsystem was successful in determining the
launch and exit enviromment, and telemetry reception of the data was
continuous through launch and exit except for a short period during
vehicle staging.

The launch-hesating enviromment of the BP-15 spacecraft was similar
to that encounterzd by the BP-1% spacecraft. Peak values at most points
for the two flights were approximately equal; however, the influence of
surface irregularities, as well as circumferential variations in heating,

SUnless specified otherwise all times shown in this report are taken
from the instant of vehicle lift-off (launch vehicle IU umbilical dis-
connect at 11:22:43 a.m. e.s.t.).

R



was somewhat different for the two flights because of differences in
trajectory and angle of attack. Both command and service module heating
rates were within the predicted range. The heat-protection equipment

on the launch-escape subsystem (LES) was subjected to temperatures

much lower than the design limits which were established on the basis

of an aborted mission.

The launch-escape-tower jettison by the alternate mode was success-
ful. Positive ignition of the pitch-control motor could not be deter-
mined; however, the gensral trajectory indicated that it operated
properly. The launch-escape motor, together with the pitch-control
motor, carried the tower structure safely out of the path of the space-
craft.

All strain-gage, pressure, and accelerometer measurements indicated
that the spacecraft performed satisfactorily in the launch environment.
Command-module conical-surface static pressures correlated closely with
wind-tunnel data, and the product of angle of attack and dynamic pressure
(ag) did not exceed 1,000 (deg)(lb/sq ft). The venting system of the
service module performed as expected. The command-module instrumentation
compartment differential pressure reached a maximum of 13.3 psi, but
vented rapidly after launch~escape subsystem separation.

A 1.8g, peak-to-peak, 10-cps vibration was noted during holddown.
Other vibration modes were similar to those experienced during the BP-13
spacecraft flight. One of the simulated reaction-control-subsystem quad
assemblies was instrumented for vibration on the BP-15 spacecraft flight.
The measured vibration levels were above the design limit.

The strain measurements in the command module and service module
indicated that all bending moments were within the design limits.

Of the 133 measurements transmitted by telemetry from the space-
raft, 131 produced continuous data.

The ground-support equipment performed satisfactorily during pre-
launch and countdown operations.



2.0 INTRODUCTION

Apollo mission A-102 was the second flight of an Apollo spacecraft
oafiguration with a Saturn launch vehicle. The unmanned flight-test
vehicle consisted or the beilerplate 15 (BP-15) spacecraft and the
3A-7 Saturn I Block IT launch vehicle. The space vehicle, shown in
figure 2.0-1, was launched from Complex 37B of the Eastern Test Range,
Cape Kennedy, Florida, on September 18, 1964, at 11:22:43 a.m. e.s.t.

The BP-15 spacecraft was the second of two boilerplate spacecraft
(see table 2.0-I) planned to be used in demonstrating the compatibility
of the Apollo spacecraft configuration with the Saturn I Block ITI launch
vehicle in a launch and exit environment using trajectories similar to
those expected for Tuture Apollo-Saturn V orbital flights with production
spacecraft. The first of this series, the BP-13 spacecraft, was success-
fully launched on May 28, 1964 (ref. 1).

The spacecraft flight configuration consisted of a prototype launch-
escape subsystem (LES), boilerplate command module (CM), boilerplate
service module (SM),and insert and adapter. Boilerplate flight-test
spacecraft are developmental vehicles which simulate production space-
craft only in external size, shape, and mass characteristics.

Boilerplate flight-test spacecraft are equipped with instrumenta-
tion to obtain flight-test data for engineering analysis and evaluation.
These data are used to confirm or modify the design criteria for the
production spacecraft.

The flight sequence of major events during the flight of the BP-15
spacecraft into orbit is given in figure 2.0-2. Spacecraft separation
from the launch vehicle was not planned for this flight; therefore, the
second stage (S-IV) and instrument unit (IU) of the launch vehicle, to-
gether with the attached spacecraft (without the LES which was jetti-
soned), were inserted into orbit as a single unit. There were no pro-
visions or plans for recovery of the spacecraft.

The flight test of the BP-15 spacecraft included the following
features not included in the flight test of the BP-13 spacecraft:

(1) The installation of instruments on one of the simulated
reaction-control-subsystem quadrants on the SM for launch and exit
temperature and vibration studies.

(2) The demonstration of the alternate mode of LES jettison, using
the launch-escaps motor and pitch-control motor. instead of using the
tower-jettison motor, as in the normal mode of jettison.

s



2-2

The first-order test objectives for the overall mission applied
to the launch vehicle only, with the exception of verification of
compatibility of the spacecraft with the launch vehicle under preflight

and flight conditions.

The test objectives which applied only to the Apollo BP-15 space-
craft were as follows:

(1) Determine the launch and exit envirommental parameters to
verify design criteria

(2) Demonstrate the alternate mode of spacecraft IES jettison
utilizing the launch-escape motor and pitch-control motor. These ob-
jectives were satisfactorily fulfilled.

An evaluation of the flight data has been made, and the results
of the evaluation are presented in this report.
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TABLE 2.0-I.~ APOLIO SPACECRAFT FLIGHT HISTORY

Mission | Spacecraft Description Launch date Iaunch site
A-001 BP-6 First pad abort 11-7-63 White Sands
Missile Range,
N. Mex.
A-002 BP-12 High q abort 5-13-54 White Sands
Missile Range,
N. Mex.
A-101 BP-13 Nominal launch and 5-28-64 Cape Kennedy,
exit environment Florida
A-102 BP-15 Nominal launch and 9-18-6L Cape Kennedy,
exit environment Florida

UNCLASSIFIED




24 UNCLASSIFIED

Figure 2,0-1,- Saturn-Apollo space vehicle for mission A-102 at lift-off,
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3.0 FLIGHT TRAJECTORIES

The trajectories referred to as "planned" were preflight-calculated
nominal trajectories suppled by Marshall Space Flight Center (MSFC), and
tha trajectories referred to as "actual" were based on the Manned Space
Flight Network tracking data. For both the planned and actual trajec-
tories, the 1963 revised Patrick atmosphere was used below 25 nautical
miles and the 1962 U.S. Standard Model Atmosphere was used above
25 nautical miles, except that the measured atmosphere at the time of
1ift-off was used for the actual trajectory up to 18.6 nautical miles.
The earth model used was the Fischer Ellipsoid. The ground track for
the first three orbital passes of the Apollo mission A-102 is presented
in figure 3.0-1. The altitude-longitude profile for the launch and
three orbital passes, presented in figure 3.0-2, shows that the actual
profile was close to the nominal.

A comparison of the actual and planned mission event times for the
launch phase is given in table 3.0-I. It can be seen from the table
that the actual S-I cutoff sequence was approximately 0.7 second later
than planned, and the actual S-IV cutoff was approximately 2.0 seconds
later than planned.

The actual launch trajectory shown in figure %.0-3 was based on the
real-time data output of the Range Safety Impact Predictor Computer
(IP-7094) which used FPS-16, Azusa, and the FPQ-6 radars. The data from
these tracking facilities were used during the time periods listed in
the following table.

Radars used g.e.t., min:sec
FPS-16 ' 0:00 to 0:31
®pzusa and FPS-16 0:31 to 6:05
#FPQ-6 and FPS-16 6:05 to 8:22
FPQ-6 8:22 to 11:04

8Radar tracking data during these times
alternated frequently between these two radars.

The actual launch trajectory is compared with the planned launch
trajectory in figure 3.0~3. It can be seen from this figure that the

=CONPMBERTIA L, -
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actual launch trajectory did provide the launch enviromment planned
for this mission. At S-I stage cutoff, the actual trajectory param-
eters were approximately 198 feet per second high in inertial velocity,

o

6,400 feet high in altitude, and approximately % high in flight-path

angle. During the S-IV burning, the inertial velocity and flight-path
angle drop below the planned at approximately T+5 minutes, and remain
below until just before cutoff. At S-IV cutoff, the velocity was

3.5 feet per second greater, the flight-path angle was 0.0023° less,
and the altitude was 1,704 feet less than planned, resulting in a more
elliptical orbit. The perigee was approximately 0.2 nautical mile
lower and the apogee was approximately U4 nautical miles higher than
planned.

The orbital portion of the trajectory is shown in figure 3.0-L.
The planned orbital trajectory was obtained using the nominal insertion
conditions, supplied by MSFC, and integrating forward for three orbital
passes. The actual orbital portion of the trajectory was derived from
the orbital position and velocity vector obtained during the first pass
over White Sands Missile Range (WSMR). This vector was determined from
the Manned Space Flight Network tracking data using the Goddard computer.
The WSMR vector was integrated backward along the flight trajectory to
orbital insertion (defined as S-IV cutoff plus 10 seconds) and forward
for three orbital passes. These integrated values were in good agree-
ment with the position and velocity vectors determined by the Goddard
computer for passes near Pretoria, South Africa; Carnarvon, Australia;
and Point Arguello, California, during the first pass. The inertial
velocities reported by these stations agreed within 5.5 ft/sec, and the
flight-path angle within 0.015°. Thus the validity of the integrated
orbital portion of the flight trajectory was established. It can be
seen in figure 3.0-4 that the actual orbital flight trajectory was in
very close agreement with the planned.

A comparison of the actual and planned trajectory parameters is
given in table 3.0-II. The table shows that the actual insertion con-
ditions and orbital parameters were in good agreement with those
planned. Using the WSMR velocity vector, the estimated lifetime of the
orbital configuration, consisting of the BP-15 spacecraft, the instru-
ment unit, and the Saturn S-IV stage, was calculated to be 53 orbital
passes, based on lifetime drag characteristics obtained from SA-6 data.
The actual reentry of the orbital configuration into the Indian Ocean
was reported during the 59th orbital pass.

A comparison of the trajectories of the BP-13 and BP-15 spacecraft
indicates that SA-6 had a higher velocity through max q and that
SA-7 attained the higher velocity shortly before S-I engine 8 cut-off
for an overall faster trajectory than SA-6.

—CONRDENFHAL
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A complete detailed analysis of the flight trajectory of the launch
vehicle is presented in reference 7.

T TCONMIDENFMA L~



<EORFIDENTTAL

TABLE 35.0-I.- MISSION EVENT TIMES

Based on lift-off signal as determined by launch-vehicle
TU umbilical disconnect at 11:22:43.26 a.m. e.s.t.

Event Planned, | Actual, | Difference,
sec sec sec
Lift-off o) 0] 0
Tilt arrest 136.3 136.3 0
IECO 1ko.7 141.3 .6
CECO 146.7 1474 T
Ullage rockets ignition 7.4 148.1 T
Separation of S5-I and S-IV 147.5 148.2 7
S-IV ignition k9.2 149.9 LT
Ullage rocket jettison 159.5 160.2 -7
Launch-escape-tower jettison 159.5 160.2 LT
S5-IV cutoff ©619.1 621.1 2.0
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TABLE 3.0-IT.- COMPARISON OF SA-7 PLANNED AND ACTUAL TRAJECTORY PARAMETERS
Condition Planned Actual Difference
S5-IV cutoff

Time from lift-off, sec 619.1 621.1 2.0
Time from lift-off, min:sec 10:19.1 10:21.1 00:2.0
Geodetic latitude, deg North 21.9258 21.8927 -0. 0331
Longitude, deg West -61.3020 | -61.183%6 -0.1184
Altitude, feet . 608, 004 606,300 -1, 70k
Altitude, nautical miles . 100. 06 99.78 -0.28
Range, nautical miles 1,119.67 1,126.5 6.8
Space-fixed velocity, ft/sec . 25,610.18 {25,618.68 8.5
Space-fixed flight-path angle, deg . 0. 0700 0. 0677 -0, 0023
Space-fixed heading angle, deg

East of North . 113.6960 | 113.7113 0.0153

S-IV cutoff +10 sec (insertion)

Time from 1i’t-off, sec 629.1 6£31.1 2.0
Time from litt-off, min:sec 10:29.1 10:31.1 00:2.0
Geodetic latitude, deg North 21.6491 21.6159 -0.0%32
Longitude, deg West -60.6726 | -60.5549 -0.1177
Altitude, feet . 608,088 606,372 -1, 716
Altitude, nautical miles . 100. 08 99.80 -0.28
Range, nautical miles 1,158.55 | 1,165.36 6.9
Space-fixed velocity, ft/sec . 25,615.04 125,623, 54 8.5
Space~fixed flight-path angle, deg . 0.0716 0. 0595 -0. 0021
Space-fixed heading angle deg

EBast of North . ... 113.9443 | 113.9590 0. 0147

‘;I:‘;4E,JNF'."!'EF"“',';2?qE




TABLE 3.0-II.- COMPARISON OF SA-7 PLANNED AND ACTUAL
TRAJECTORY PARAMETERS - Concluded

Condition Planned Actual Difference
Orbital parameters
Perigee altitude, statute miles . . . . 115.17 114.85 - 0.32
Perigee altitude, nautical miles . . . 100.08 99. 80 - 0,28
Apogee altitude, statute miles . . . . 136.75 140.82 L. o7
Apogee altitude, nautical miles . . . 118.83 122.37 3.54
Period, e T 88.58 88. 6k 0.06
Inclination angle, deg . . . . . . . . 31.76 31.75 - 0.01

Maximum conditions

Altitude, statute miles . . . . . . . . 136.75 1%0.82 4, o7
Altitude, nautical miles . . . . . . . 118.83 122,37 3.5k
Space-fixed velocity, ft/sec . . . . . |25,615.0k |25,623.54 8.50
Earth-fixed velocity, ft/sec . . . . . |24,287.75 |24,296.21 8.46
Exit acceleration, € . . . . « . « . . 5.80 5.88 0.08
Exit dynamic pressure, 1b/sq ft . . . . 720.0 749.6 29.6
Lifetime, revolutions . . . . . . . . . 53 59 6
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4.0 SPACECRAFT DESCRIPTION AND PERFORMANCE

4.1 Spacecraft Description

The Apollo boilerplate 15 (BP-15) spacecraft was composed of four
major assemblies: the launch-escape subsystem (LES), the command module
(CM), the service module (SM), and the insert snd =dapter. These mzjor
assemblies were similar in external configuration to the production
Apollo spacecraft. The major assemblies and exterior dimensions of each
are shown in figure 4.1-1. The reference axes system for locations with-
in the spacecraft is given in figures 4.1-2 and 4.1-3. The MSC axes sys-
tem for orientation and motion is given in figure 4.8-7.

The launch-escape subsystem (LES) is shown in figure %.1-4. The
truss-type tower structure was a welded titanium tutular frame, and the
exposed surfaces were covered with silica-filled Buna-N rubber for ther-
mal insulation. Each of the four legs of the LES was attached to the
command module by an explosive bolt. A structural skirt was mounted be-
tween the top of the tower structure and the launch-escape motor. The
bolt attachments at the interface between the tower and the skirt pro-
vided LES alinement capability. Two sequencers which forwarded a firing
signal to the LES pyrotechnics were attached to the underside of the
skirt.

The LES motors for pitch control, tower jettison, and launch escape
were live. However, there were no initiators instailed in the jettison
motor, and the wiring circuit from the sequencers to this motor was pur-
posely not completed so as to simulate a jJettison-motor failure. The
alternate mode of tower jettison (by firing only the launch-escape and
pitch-control mctors) was used.

A conical section of welded Inconel sheet was mounted to the for-
ward end of the pitch-control-motor housing. The section contained
183 pounds of sheet lead ballast to provide the proper LES mass charac-
teristics. The ballast enclosure also provided the interface plane for
mounting the Q-ball assembly. The performance of the LES is described
in sections 4.5 and 4.6.

The commend module was conical with a convex base and rounded apex.
The apex consisted of a fiber-glass radome containing the VHF telemetry
omniantenna. (See fig. 4.4-2,) The CM sides were semimonccogue alumi-
num structures terminating in the forward and aft heat shields. The ex-
terior was covered with cork for protection against aerodynamic heating.
Section 4.10 presents a description of the cork insulation configuration.
The imnner side walls and the top of the cabin were insulated with a
gquilted glass-fiber material. The major components of the subsystems
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were mounted on shelves and brackets located along portions of the
inner wall as shown in figures 4.1-5 and L.1-6.

A cylindrical aluminum structure was welded to the forward bulk-
head of the CM to simulate the egress tunnel of the production space-
craft. A main hateh of aluminum alloy provided access to the cabin.
Prior to launch, the hatch was bolted to the CM exterior structure and
sealed with epoxy.

External protuberances of the production spacecraft configuration,
including the air vent, umbilical fairing, simulated SM reaction.control-
subsystem (RCS) quad assemblies, and two scimitar antennas, shown in
figure 4.1-7, were simulated for a better definition of launch environ-
ment parameters.

The (M aft heat shield was similar in size and shape to the opera-
tional heat shield. It was composed of an inner and outer layer of lam-
inated glass fiber over an aluminum honeycomb core and was attached to
the CM by four adjustable struts. No prototype ablative material was
used because the aft heat shield was not exposed to the launch environ-
ment and no recovery of the spacecraft was planned.

The boilerplate service-module assembly consisted of the CM to SM
fairing, service-module structure, and insert, all of which were bolted
together. The boilerplate adapter was bolted to the insert. The SM
assembly and the insert, shown in figure 4.1-8, were of semimonocoque
aluminum construction. For further structural details, see section 4.7.

A pneumatically actuated umbilical assembly was located approxi-
mately 18 inches below the top of the SM at 122° (fig. 4.1-2). External
electrical power, ground-support-equipment (GSE) signals, and coolant
fluid entered the spacecraft through the umbilical prior to launch.

Four simulated RCS quad assemblies were attached to the upper por-
tion of the SM exterior, 90° apart. In order to duplicate the aerody-
namic characteristics of the production units, the simulated units were
similar in size and shape and were arranged on the SM in the same loca-
tion as they would be found on the production spacecraft. The RCS quad
assembly located near the -Z axis was instrumented to provide temperature
and vibration measurements. For further details see section 4.8.

In addition to the transducers and associated components and wiring,
the SM and adapter contained electrical wire harnesses which interfaced
with the launch-vehicle instrument unit for the Q-ball, tower-jettison
command, and GSE signals (fig. 4.1-8).

- “CONF IDENTIAdn.
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The spacecraft weight when inserted into orbit was 17.231 pounds;
the spacecraft weight at lift-off was 23,838 pounds. Prior to ship-
ment from Downey, the total weight of BP-15 spacecraft was reduced by
1,600 pounds, which made the BP-13 and BP-15 spacecraft ballast config-
urations almost identical. This reduction was achieved hy removing bal-
last from the SM and adapter. The BP-15 spacecraft weight was greater
than that of BP-13 spacecraft by 208 pounds at orbit Iinsertion and
295 pounds at lift-off. This weight variation was due to known struc-
tural changes and manufacturing variations. Table 4.1-I shows major
module weight differences between the BP-13 and BP-15 spacecraft. The
final weight was acceptable to Marshall Space Flight Center (MSFC).
Actual weights for the command module, service module, and SM insert
and adapter were individually obtained at Downey. The mated SM, CM,
and adapter were weighed together at the Eastern Tect Range (ETR). The
actual weight and the location of the longitudinal center of gravity of
the launch-escape subsystem were obtained at the NASA Merritt Island
Launch Area (MIILA). Weight changes to the spacecraft were then monitored
until launch, and the actual weight and center-of-gravity data were ad-
justed. The resultant mass characteristics are shown in table 4.1-IT.
The weights shown in this table include pallast weights of 2,014 pounds
in the CM, 245 pounds in the adapter, and 183 pounds in the LES.
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TABLE 4.1-I.- WEIGHT COMPARISON OF BP-13 and BP-15 SPACECRAFT

Weight, 1b

BP-1% BP-15 Difference
Command module 9,300 9,L77 177
Service module 4,172 L,149 =23
SM insert and adapter 3,551 3,605 o4
Total spacecraft in orbit 17,023 17,231 208
1ES 6,520 | 6601 &1
Total spacecraft at launch 23,543 23,838 295
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Figure 4,1-1.- Apollo BP-15 spacecraft.
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Both views looking aft
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Figure 4,1-2.- Y- and Z-axes and angular coordinate system used for
designating locations within the BP-15 spacecraft.
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Figure 4,1-4,- Launch escape subsystem for BP-15 spacecraft,
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Figure 4.1-7.- Command module exterior of BP-15 spacecraft.
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Figure 4.1-8.- Cutaway view of BP-15 spacecraft
service module, insert, and adapter.
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Iy,2 Instrumentation

DescrigtionL- The instrumentation subsystem provided conditioned
analog signals which indicated the launch and exit environment of the
BP-15 spacecraft to the communications subsystem. Specifiec instrumen-
tation was supplied to satisfy measurement requirements in the following
areas: acceleration, acoustics, vibration, pressure, temperature, heat
flux, strain, frequency, voltage, current, and discrete events.

The block diagram in figure 4.2-1 shows both the instrumentation
subsystem and the communications subsystem. Table 4 . 2-1 presents a
summary of the measurement requirements for the Apollo mission A-102.
Table 4.2-IT lists the flight equipment used to obtein the required
measurements, and table 8.1-I is a detailed list of the individual meas-
urements on board the spacecraft. The location of the major instrumen-
tation components within the command module are shown in figures 4.1-5
and 4.1-6. The locations of most of the transducers are shown in fig-

ures 4.2-2 to Lk.2-7.

Also included in table 8.1-I are the ground-support-equipment (GSE)
measurements and the transducer outputs which monitored angle of attack,
angle of sideslip, and dynamic ram pressure from the Q-ball system fur-
nished by the NASA-MSFC. The six Q-ball outputs, two radial vibration
measurements, and one acoustic microphone output were routed to the
launch-vehicle instrumentation unit and conditioned for launch-vehicle
telemetry.

All of the measurements monitored on the BP-15 spacecraft required
some type of conditioning before they reached the modulation section.
The instrumentation subsystem included two signal conditioning boxes,
one low-level (0 to 10 mv) and one high-level (0 to 5 v).

The heat fiux and temperature low-level signals were conditioned
in the temperature signal conditioning box. These signals were routed
to the low-level 90 X l% commutator and were sequentially sampled at
1.25 times per second. The signal conditioning box also provided O,

5 mv, and 10 mv d-c reference voltages to the 90 X l% commutator to
enable accurate data reduction of the low-level system.

Amplification of the low-level signals was provided in order to
give an output PAM wavetrain varying between 0 and 5 v d-c.

The high-level signals requiring conditioning were fed to the main

conditioning box., This box distributed the high-level signals to the
90 x 10 commutator and to the modulation packages. It also supplied

UNGLA S S | b
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the commutator with O and 5 v d-c reference voltages for data reduction
purposes. The 90 X 10 commutator sequentially sampled each of its in-
puts 10 times per second and provided a PAM wavetrain varying between
¢ and 5 v d-c.

Both the PAM wavetrains and the continuocus signals were fed to the
modulation section where they freguency modulated their respective volt-
age controlled oscillators (VCO). The modulation section consisted of
three modulation packages designated as A, B, and C. Package A contained
VCO for IRIG channels 6, 9 to 16, and channel E. Packages B and C each
contained VCO for IRIG channels 6 to & and 10 to 18. The outputs of the
VCO in each modulation package were mixed into two separate video com-
posite signals by two mixer amplifiers. One amplifier supplied a
composite output to the GSE for test purposes, and the other supplied
a composite signal to its associated transmitter in the RF package.

Configuration changes from BP-13 spacecraft.- Shielding, as shown
in figure 4.2-8, was added to the cabling between the low-level commu-
tator and the low-level temperature conditioning box input to eliminate
the electromagnetic interference (EMI) experienced on the BP-13 space-
craft. This interference was present only when the BP-135 spacecraft had
the CM hatch removed and was adjacent to the service structure on the
launch pad.

Strain-gage ranges were changed from 1,000 and 4,000 pin./in. used
on BP-13 spacecraft to 500 uin./in. because of the low magnitude of meas-
urements experienced during BP-13 spacecraft flight.

Sixteen temperature measurements and two vibration measurements
were added to instrument the RCS quad. The addition of the vibration
measurements necessitated the deletion of two fluctuating pressure meas-
urements so that the high-response channels could be used for the vibra-
tion measurements.

Performance.- The flight performance of the BP-15 spacecraft instru-
mentation subsystem was satisfactory. Of the 133 measurements instru-
mented on the BP-15 spacecraft, only 2 failed to provide continuous data.
Calibration of the thermocouple system used in the RCS is to be verified.

Data were lost for approximately 4 seconds during launch-vehicle
staging due to flame attenuation from the S-I stage retrorockets. No
interruption of RF transmission due to launch-escape-motor i'lame atten-
uation was noted. Evaluation of the telemetry data received during the
first orbital pass of the spacecraft indicated that instrumentation was
operating properly.

—CONHPEIIA L.~
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Temperature measurement SR587TT, located on the +pitch nozzle of
the instrumented RCS quad (fig. 4.8-9) failed to show the expected rise
in temperature. A constant output of approximately h-percent information
bandwidth was indicated during countdown and launch. This information
level seen prior to launch appeared to be normal for ambient conditions.
During the flight, the reading was inconsistent with the actual environ-
ment determined by other thermocouple measurements in the immediate area.
This measurement was satisfactorily calibrated electrically prior to
launch, but this was not a positive indication that the entire thermo-
couple circuitry was flightworthy since the thermocouple was not included
in the calibration circuit. TFor additional details regarding this meas-
urement see sections 4.8 and 9.2.

Heat-flux measurement SA0553R located on the SM under the +pitch
nozzle of the instrumented RCS quad (fig. 4.2-6) provided questionable
data. Response was normal when the unit was calibrated approximately
2 minutes prior to launch which indicated circuit contimuity. Analysis
of the data indicated the transducer responded to excitation at main-
stage ignition. There was no further response from this circuit, while
the corresponding body-temperature measurement SAOS63T increased nor-
mally with aerodynamic heating during the flight. The exact time or
mode of malfunction was not apparent from the flight date. For addi-
tional details regarding this measurement see sections 4,11 and 9.3.
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TABLE 4.2-I,~ APOLLO MISSION A~102 MEASUREMENT REQUIREMENTS SUMMARY |

Measurement Quantity Tocation Requirement
2 LES . . .
A Lerats 3 oM Determine structural body bending moce
ceceleration 5 SM responses under flight loads.
1 CM
3 SM R . .
Vibrati a Determine structural vibration mode
1bration 2 Adapter | responses under flight loads.
2 SM-RCS
Determine static aerodynamic loading
9 CM . .
on outside conical surface.
Pressure 1 CM Determine flight pressure venting
1 SM characteristics.
Fluctuating > Adapter petgrmlne”%?rodynaglc loai}ng on ex-
ssure 11 M terior suwifaces and acoustical
pre environment. ’
Acoustic al SM Determine exterior acoustic level
under flight environment.
Strai 2 SM Determine structural stresses and
rain 4 Adapter | flight loads.
12 CM . R .
Heat flux = M Determlng aerodxnamlc heating rates
on exterior surfaces.
1 Adapter
12 M Determine calorimeter body tempera-
7 SM ture for accurate data reduction
1 ‘Adapter of heat flux.
8 [ES Determine tower temperature caused by
gerodynamic heating.
Temperature 1 CM Determine interior temperature withir
1 SM SM and crew compartment.
Verify foper heat transfer from RF
6 cM P
packages.
15 SM-RCS Determine RCS temperatures during
flight.

aTransmitted on launch-vehicle telemetry.
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TABLE 4,2-II.- FLIGIT EQUIPMENT FOR DBP-15 SPACECRAFT INSTRUMENTATION SUBSYSTEM

L-19

Component Vendor Model Quantity
TM modulation package Bendix TATP-316
90 X 10 commutator Applied Electronics 340-23-5
90 x 1f commutator Fifth Dimension LDA12N-k32 1
Main signal
conditioning box Brown CH~L150 1
Temperature signal
conditioning box Microdot 401-0110-1 1
Amplifier rack NASA-MSC 1-A 11
d-c amplifier Engineered Magnetics 2000D=-1 7
Vibration system: Endevco 28153 1
Accelerometer Endevco 22hoMBA 1
a-c amplifier Endevco 2633M10 1
Vibration system: Endevco 28191 2
Accelerometer Endevco 2633M13 2
a=-c amplifier Endevco 22h2M5A 2
Vibration system: Endevco 28191 3
Accelerometer Fndevco 2hoMsA 3
a-c amplifier Endevco 2633M10A 3
Pressure system:
Transducer Statham PA-288TC~15-350 13
d-c amplifier Engineered Magnetics 2000D-1 13
Pressure transducer Wiancko P2-3236-1 11
Accelerometer Donner 4310 T
Strain gage Baldwin-Lima-Hamilton | EBF-13D L8
Resistance thermometer | Trans-Sonics 2168A 9
2168Aa-2 8
2168A-2-12 1
T L0OB.2A-2 2
Thermocouple Coi-tinental TC-6 9
Sensing TC-6A 3
Calorimeter Hy-Cal C=1123=A-5=012 8
Hy=-Cal C=1123-A~25-0 12
Zone box Microdot 401-0138-1 20
Rugge de Forrest 38782 12
Acoustic system: NASA MSFC A
Mierophone Gulton 50M10401
Emitter-follower .
a-¢ amplifier } Glennite FCT-601V 1
Q-ball assembly Nortronics P16 1
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*)

1
L J
2
O Measurement Location
1 LAOO1l1A X380 YO Z6
2 LAOD12A X380 Y 6 Z0
‘ 3 CAO0001A Xc78 YO Z21
J 4 CAO005A Xc78 YO Z21
i 5 CAO0007A Xc78 YO Z21
6 SA0003A Xp866 YO Z73
/’ 7 SA0004A Xp866 YO 273
‘ 3
e 4
[
5
~ - - -
o f—b
~7
2700 909°
=Y +Y Note:
Measurement numbets refer to
listing in table 8.1-1,
L
) Farside
@ Near side

Figure 4.2-2.~ Locations of linear acceleration transducers for BP-15 spacecraft,
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} ~ 3 /j/l
Cl{»\_\z
6 3
\ /
5 = 4
e e Lol
270° 900
-y +Y
i (O Farside
: @ Near side

Note:
Measurement numbers tefer to
listing in table 8,1-1,

Figure 4.2-3,- Strain-gage locations on BP-15 spacecraft.
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Measurement Location
1 SA2120S XA940.4 62,25°
2 SA2121S XA940.4 77.25°
3 AA0198S Xp736 YO Z76
4 AA0195S XA736 Y 76 Z0
5 AA0197S XA736 Y76 Z0
6 AAQ0196S XA736 YO Z76
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Measurement
1 SA0162P Xp1000 329.25°
2 SA0165P Xp973 277.5°
.y 3 SA0166P Xp959 215.3°
4 SA0168P Xp932 187.25°
5 SAO171P Xp906 277.25°
6 SA0170P X7893.5 316.6°
7 SA0172P X881 277.25°
8 AA0173P Xp764 183°
9 AA0174P Xp737 30
10 SA0169P X919 58,9°
11 SA0167P X938 147.9°
12 SA0164P X7959 58,90
13 SA0163P_ X959 24.1°
14 SA2760Y X,1005 0°

D 14

A

a Microphone

Note:
Measurement numbets refer to

1 — 13
~ _0O < —
2\3,;; _7\4/12
3— T e——11
4 ® o—+—10

5??

6/

7

8 .

9 —0
2700 90°
-y +Y

(C) Farside

@ Near side

listing in table 8,1-1,

Figure 4.2-4.- Fluctuating-pressure transducer |ocations on BP-15 spacecraft,
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1 +Z=0°

8

+Y=900

7

Measurement Location

1 CA0078P X 20 357°
2 CA0076P X¢g27 357°
3 CA0073P Xc 36 357°
4 CA0071P Xc76 357°
5 CA0075P Xc29 180°
6 CA0079P X¢20 180°
7 CA0074P Xc 36 93°
8 CA0077P Xc27 87°
9 CA0072P Xg76 87°

Note:
Measurement numbers refer to

listing in table 8,1-1.

() Farside
@ Near side

Figure 4.2-5.- Locations of conical-surface pressure transducers
on the BP-15 spacecraft,
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Measurement Location
1 CAO0580R Xc74 3
CA0651T
CA0581R Xc74 180°
CA0652T
2 CA0582R Xc 74 319°
CA0653T
3 CA0584R Xc52 3°
o CA0655T
CA0583R Xc53 180°
CA0654T
4 CA0588R X 52 319°
CA0659T
5 CAO591R Xp27 319°
1. é CA0662T
6 SA0550R X5338 183°
2 SA05607
16 7 SAO55IR Xg315 187,2°
3 SA0561T |
4 0 8 SA0553R X305 187.2°
o -15 SA0563T
5 O @ 9 SAD598R Xp933 183°
b /0 @ 14 SA0669T
—, 10 AA0594R X770 183°
| T2 AA0665T
F\\\' 11 SAO555R X5267 145°
8— |13 SA0565T
e e | [0 12 SA0554R Xg267 160°
9— .(,—% SA0564T
e ¢ o111 13 5A0552R Xg305 177°
SA0562T
14 CA0589R Xc42.65 3°
CA0660T
CA0590R Xc27 180°
: 10 CA0661T 500
— 10 15 cA0585R X 52 0
o | CA0656T ¢
CA0586R Xc52 85°
= o CA0657T
270 90 16 CAO587R X 52 950
-Y +Y CA0658T
Note:
Measurement numbers refer to
() Farside listing in table 8.1-1.
@ Near side

Figure 4.2-6.- Locations of heat-flux calorimeter body temperature measurement
on BP-15 spacecraft.
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Measurement Location
o~ 1 SA0087D Xp953 Y -53.9 247.7
2 AA0090D Xa777.7 Y -15.5 Z71
3 AA0089D Xp777.7 YO Z72
4 SA0088D X2940.4 Y 68.3 Z22.8
5 SA0086D Xp965.2 Y92.8 Z 58
', 6 CA0021D Xcl4 Y 40.4 Z37.3
H 7 SA0092D X294 191°
| 8 SA0091D  Xg294 191°
T .6
~ ({ . A 5
-y L
1\ T ./
~o .ﬁ, .
/ ¢ .\4
&/
8

/3

2700 900
-Y Y Note:
Measurement numbers refer to
listing in table 8,1-1.
(") Farside
@ Near side

Figure 4,2-7.- Locations of vibration transducers on BP-15 spacecraft.
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4,3 Electrical Power and Sequential

Electrical subsystem.- The electrical subsystem provided the power
and circuitry for the communications, environmental control, instrumen-
tation, and sequencing subsystems. A block diagram of the electrical
circuitry and components is shown in figure 4.3-1, with a layout showing
the location of the components within the command module in figure 4,3-2.,

Spacecraft power was provided by an external ground-support equip-
ment (GSE) power supply until T-12 minutes, at which time the power
loads were transferred to the internal spacecraft batteries. The bat-
tery power for the instrumentation, environmental control, and communi-
cation subsystems came from two silver~zinc main batteries A and B,
which were rated at 120 amp-hr at a 12-amp discharge rate.

The main batteries successfully met all power requirements for the
mission including the first orbital pass and exceeded the planned bat-
tery 1life. Main battery A, which had a current drain of approximately
17 amps, supplied 7 hours and 38 minutes of useful power. This was
verified by the reception of transmitter A at the Hawaii Radar Station
on the fifth orbital pass.

Main battery B supplied useful power for 5 hours and 20 minutes.
The current drain on battery B was approximately 25 amps from T-12 min-
utes to T+5.6 minutes. At T+5.6 minutes the ECS fan operation was
terminated, dropping the current drain on battery B to approximately
17 amps. The useful life of battery B was verified by the reception
of transmitter C at the Pretoria, South Africa, range station on the
fourth orbital pass.

The electrical subsystem for the BP-15 spacecraft was identical to
that flown on the BP-13 spacecraft, with the exception of the prelaunch
conditioning of the main batteries and of the sequencer pyro and logic
batteries. The BP-15 main batteries were activated using 135 cc of
electrolyte per cell as compared with 133 cc used on the BP-13 space-
craft. The logic and pyro batteries flown on the BP-15 spacecraft were
used on the second discharge cycle, while those flown on the BP-13
spacecraft were used on the first. These changes in prelaunch condi-
tioning were based on the results of battery performance improvement
tests completed since the BP-13 spacecraft flight.

Sequential subsystem.- The sequential components consisted of a
mission sequencer having two independent circuits (A and B) for relia-
bility and two tower sequencers. As shown in figure 4. 3-3,each tower
sequencer was controlled by one of the two mission sequencer circuits.
The sequential subsystem included no built-in time delay between
receipt of the signal and initiation of the pyrotechnics in the ex-
plosive bolts, launch-escape motor, and pitch-control motor.
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Using GSE power, the mission-sequencer logic and pyro circuits
were armed at T-T7 minutes. Each circuit had one pyro battery and one
logic battery, which were rated at 6 amp-hr at a l-amp discharge rate.
After arming, the voltages on the logic and pyro batteries were between
33.25 and 33.7 volts. Telemetry data indicated that the logic and pyro
buses remained armed and the batteries functioned satisfactorily through
tower jettison as required.

Twelve seconds after separation of the S5-I and S-IV stages, a
signal was sent from the S-IV instrument unit to the sequencer logic
circuitry. The signal closed the firing circuits, and ignited the
LES explosive bolts, launch-escape motor, and pitch-control motor.
Tower-separation command was confirmed by telemetry data which indicated
relay closures in circuits A and B. DPhysical separation of the tower
from the spacecraft was verified by the termination of the electrical
measurements on the tower. Optical data confirmed ignition of the
launch~escape motor and separation of the LES tower.

The sequential subsystem flown cn tue BP-15 spacecraft was identi-
cal to that used on the BP-13 spacecraft and performed satisfactorily.
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GSE power

Power control box

supply A

GSE launch
control

L

UNCLASSIFIED

j/f

Telemetry A
transmitter

J}/F

Power amp

Telemetry B
transmitter

t

M-
7|/f

Instrument
bus

Power amp

Bus A

Main A
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o O

relay control to ¢
~

Telemetry VCO
and instrument
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v
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—
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Figure 4,3-1, - Electrical power subsystem for BP-15 spacecraft,
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/——— Command module

Junction box

Ground terminal

board
Power and

control box

Terminal board

Logic battery B T

Terminal board \

Logic battery A /

\\5

Vehicle
ground
point

Relay box

Pyro battery A

= //

Main battery A ' Pyro battery B
Main battery B

Figure 4,3-2, - Electrical power subsystem-components.
for BP-15 spacecraft.
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Instrument unit

I
|
|
|
Mission sequencer L _ _ J
—————— - =
|
|
Pyro A battery —\ }

71  Tower sequencer
N
L O
'l' :'_] : I \EJ 'Squibs
: i { : r : ]
: | ! ]
Logic bus A 5 | : —t i H ] } Tower bolts
| ey | ey Launch tor &
H aunch escape motor
Logic A battery | ] l ! h:—“"——' } pitch control motor
~ VT |
DT HIN B
Ground point ~a.
Pyro bus A
To circuit A
‘ | h
| Sosnio?unc GSE safe and arm control
equipment to driver circuits

7S

Treui To circuit B
Spacecraft | Circuit A )
monitoring @D
Key

@ Pyto safe and arm motor switch

@ Logic safe and arm motor switch
Circuit B same as circuit A @ Jettison motor switch
/\ Safe and arm driver

® Logic jettison relay

Figure 4 .3-3 .- Launch escape sequencer subsystem for BP-15 spacecraft,
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4.4 Communications

Description.- The communications subsystem of the BP-15 spacecraft
consisted of three VHF telemetry transmitter packages and two C-band
transponders (fig. 4.2-1).

Each of the transmitter packages shown in figure 4.4-1 consisted
of a d-c to d-c converter, a 2-watt FM transmitter, a 10-watt RF ampli-
fier, an RF bandpass filter, and a power-line filter.. The RF carrier
frequencies were 237.8 mc, 247.3 me, and 257.3 me, and were designated
as telemetry links A, B, and C, respectively. The RF carrier deviation
of each transmitter was set for 125 kec.

The RF outputs of the three transmitter packages were fed into g
multiplexer which combined the individual outputs into one RF composite
signal. This signal was fed by way of a bandpass filter unit to a VHF
omi-antenna located beneath the radome at the apex of the command
module (fig. 4.L4-2).

The power for the A and B transmitter packages was supplied by the
main bus A of the spacecraft power system, and the power for package C
was supplied by the main bus B of the spacecraft power system. Power
required for nominal transmitter performance was 6.5 amp at 28 * 4 v d-c
per unit.

Two redundant C-band transponders, shown in figures 4.2-1 and 4 4-1,
were used for tracking the spacecraft during launch, exit, and the ini-
tial orbital phases of the mission. Each transponder received and
transmitted through a power divider which, in turn, fed or received
from two helical antemnas (figs. 4.4-3 and 4. 4-4), which were flush-
mounted, 180° apart,on the surface of the service module. Power for
each of the transponders was supplied by the main bus B of the space-
craft power system.

The transponders were interrogated with an RF signal consisting
of two l-microsecond pulses spaced 3.5 microseconds apart. The trans-
ponder decoder (fig. L. h4-4) received the signal and triggered the
transponder transmitters. Each of the two transponder transmitters
generated a 0.75 microsecond pulse in reply. These pulses were trans-
mitted at a minimum peak power output of 500 watts.

Performance. - During the launch phase of the BP-15 spacecraft, the
three telemetry transmitter systems performed satisfactorily and pro-
vided good quality data. The only interruption of RF transmission
during the launch phase occurred for a period of 3 seconds on all links
at the time of S-I staging (T+148.2 sec). Telemetry reception was
maintained at Cape Kennedy until T™+570 seconds. A complete list of
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telémetry acquisition and loss-of-signal times for zll range stations
is recorded in table T.3-1.

During the launch bhase, the measured temperature extremes in the
transmitting system were 43° F and 50 F. These values were well with-
in the maximum allowable limit of 150 F, and they compare favorably
with the 40° F and 55° ¥ extremes measured during the launch phase of
the BP-13 spacecraft (ref. 1). During the first pass over Cape Kennedy,
the measured temperaturp extremes were #9 F and 56 F as compared
with 89° F and 120° F measured on the first pass of the BP-13 spacecraft,
indicating improved performance of the equipment cooling subsystem.

The two C-band transponders, carried on the BP-15 spacecraft for
tracking, were interrogated during launch by the Patrick Air Force Base
radar. The only loss of transponder signal during the launch phase
lasted for a period of 2 seconds at the time of launch-vehicle staging.

Throughout the launch and orbital phases of the BP-15 spacecraft,
the performance of the C-band transponders was good. The pulse repeti-
tion frequency'(PRF), measured by way of telemetry link A, of the two

beacons was normal.

The last range station to report acquisition of the transponders
was Hawaii on the third orbital pass. The C-band radar coverage times
from acquisition to loss of signal for each of the participating range
stations is shown in table 7.3-I1I.

In conclusion, the communications subsystem successfully fulfilled
the specified mission requirements, and performance was not degraded by
either anomalies or melfunctions.
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Potted TM
omniantenna

Fiber-glass
radome

CM forward
compartment

j\r I\ﬁ cover

Figure 4,4-2, - Location of telemetry omniantenna
on command module of BP-15 spacecraft.
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+7
330° °
/.25 C-band antenna
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transponder B
60°
\
277.25° \ -
- .
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transponder A o
240 ~®———— (-band antenna
transponder B
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Xg 317 !
Xg 294 —_— —_——
]
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Figure 4,4-3,- BP-15 spacecraft C-band beacon antenna locations
on the service module,
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Helical antenna Helical antenna

Power
divider

+360 v Duplexer
Loc'al Pre-selector Magnetron
oscillator
Pulse
I Mixer forming Telemetry
' network T

Trigger
detector

+1 +
2v IF 360 v Modulator T
amplifier +720 v unit

-12 v —p l -12v T +12v
+12 v —p ¢— +12 v
Video Trigger
amplifier generator
-12 v —P -12v

f

P Decoder
28 vd-c — -12 v

| |

¢— +12 v

i L +720 v
Line > Power — +360 v
filter supply —9» -12v

—» +12 v

Figure 4,4-4,- C-band transponder block diagram for BP-15 spacecraft,
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4.5 Pyrotechnic Devices

Pyrotechnic devices were used on the BP-15 spacecraft to ignite tae
launch-escape and pitch-control motors and to release the launch-escaps
tower from the attachment to the command module. The assignments of tae
pyrotechnic devices are shown in table 4.5-I.

The spacecraft prototype igniter cartridges (ME 453-0014-0081) were
installed in the launch-escape and pitch-control motors as shown in
figure 4.5-1. Redundant cartridges were employed to enhance the relia-
bility for ignition. Each cartridge contained the Apcllo standard hot-
bridgewire initiator (ME 453-0009-000k) designed to ignite the propel-
lant within 10 milliseconds when a current of 3.5 amps is applied to
the bridgewire.

The ME4S3-0014-0081 prototype cartridge performed satisfactorily on
the BP-6 and BP-12 spacecraft (refs. 2 and 3), and photographic data
indicated satisfactory performance on the BP-15 spacecraft.

The same cartridge configuration except for a different thread size
(M 453-0014-0082) ignited the tower-jettison motors satisfactorily on
the BP-6, BP-12, and BP-13 spacecraft (refs. 1 to 3).

The launch-escape tower was secured to the command mndule by an
explosive bolt assembly in each tower leg as shown in figure 4.5-2. The
bolt assemblies were of an interim configuration, pending completion of
the development of the production spacecraft dual-mode bolts. The bolts
were identical to those which were used successfully on the BP-6, BP-12,
and BP-13 spacecraft with the exception that the bolt body threads on
the BP-15 configuration were precision rolled to reduce stress concen-
tration at the thread root, instead of being machine cut.

Each bolt assembly contained an ME 111-0001-0015 cartridge (see
fig. 4.5-3) with dual initiators which ignited the single propellant
charge. The propellant gas pressure, operating againet the actuating
piston (area ratio, approximately 20 to 1) compressed the silicone plugs.
The silicone plugs, under high pressure, served as & hydraulic fluig,
which loaded and broke the bolt in tension. The initiators were not the
Apoilo standard initiators, but had the same response-time characteristics
and were of similar configuration. The only exceptions were a slightly
higher bridgewire resistance (1.35 i 0.1 ohm) and a larger *hread size
to accommodate the interim explosive bolt. The Apollo standard initiators
(1.00 ohm bridgewire resistance) are planned to be used with the produc-
tion spacecraft dual-mode bolts.

The firing current was applied simultaneously to the explosive beclts
and igniter cartridges of the launch-escape and pitch-control motors.

g
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The bolts released the tower, and the rocket motors propelled the tower
out of the path of the spacecraft.

The primary purpose of the pyrotechnic devices was to ignite the
rocket motors and to release the launch-escape tower. Optical and telem-

etry data indicated that separation occurred at T4+160.2 seconds.
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Launch escape
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MUt
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T . Command module-
initiator wires

launch escape
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initiators
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Explosive bolt \ (ME 111-0001-0015)

Spherical X///
washer P
Nut
ﬁ ; —
k ] _—"" CM structure

(longeron)
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Figure 4.5-2.- BP-15 launch escape tower explosive bolt installation,
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4,6 Launch-Escape Subsystem Propulsion

The launch-escape, pitch-control, and tower-jettison motors used
in the BP-15 spacecraft launch-escape subsystem were of the same con-
Tiguration as the respective motors used in the qualification test pro-
sram for Apollo Block T and Block IT.

To demonstrate alternate mode of tower jettison, the launch-escape
and pitch-control motors were utilized, and the tower-jettison motor
contained no initiators.

During a normal Apollo mission, the alternate mode of tower jettison
is planned for use in the event that the normal mode, using only the tcwer-
jettison motor, fails.

Launch-escape motor.- The launch-escape motor is designed to pro-
vide the propulsive force required to remove the command module from
the launch vehicle in the event the mission is aborted during the count-
down or launch phase through approximately 35 seconds of Saturn V second-
stage burning (at an altitude of approximately 295,000 ft). In additicn,
the launch-escape motor may be used in the alternate mode of tower
Jettison.

The location of the motor with respect to the command and service
module is shown in figure 4.1-1, and the location with respect to the
launch escape subsystem is shown in figure 4.6-1. A motor configuraticn
diagram is shown in figure L4.6-2.

The launch-escape motor used a case-bonded solid propellant of
polysulfide fuel binder and ammonium perchlorate oxidizer cast into an
eight-point, internal-burning, star configuration. The motor had four
nozzles spaced 90° apart and canted 35° outward from the longitudinal
axis of the motor. The four nozzles had graphite throat inserts and
fiber-glass phenolic exit cones. A nominal thrust vector off-set of
2.75° from the motor centerline was provided by the use of one oversize
and one undersize nozzle in the pitch plane. The thrust-vector offset
was provided so that the negative pitch thrust vector passed more nearly
through the center of gravity of the launch escape vehicle. Polyurethene
blowout closures were glued into each nozzle throat to provide a sealec
environment inside the motor during handling and storsge.

The motor was ignited by a head-end mounted igniter, which incorpo-
rated redundant hot-bridgewire initiators. The igniter was mounted in
the forward end of the motor, concentric with the longitudinal axis. The
igniter propellant was of the same formulation as the propellant used in
the motor. The initiators were used to ignite boron-potassium nitrate
pellets, which, in turn, ignited the igniter propellant.
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The predicted performance parameters for the motor are presented in
table 4.6-I. A predicted thrust as a function of time is presented

in figure 4.6-3.

Pitch-control motor.- The pitch-control motor is designed to pro-
vide a positive pitching moment to change the initial attitude of the
command module in order to remove the command module from the launch
area during a pad abort and from the flight path of the launch vehicle
during a flight abort. For the alternate mode of tower jettison the
pitch-control motor provides the pitching moment required to assure pro-
per clearance of the launch escape tower from the launch vehicle and
command module. The positive pitch thrust counteracts the negative
thrust vector angle of the launch escape motor for approximately 0.6 sec-
ond to provide greater lateral displacement of the LES away from the
spacecraft prior to LES tumbling.

The pitch-control motor used the same propeliant formulation as
the launch-escape motor. The propellant was cast into a 1lhk-point,
internal-burning, star configuration.

The motor had one nozzle containing a graphite throat insert housed
in a steel structural shell. A polyurethane blowout closure was glued
into the nozzle to provide a sealed environment inside the motor during

handling and storage.

The motor was ignited by a pellet-type igniter which was mounted
in the head end of the motor, concentric with the longitudinal axis.
Redundant hot-bridgewire pyrotechnic initiators were used to ignite
boron-potassium nitrate pellets, which ignited the motor propellant.

Location of the motor with respect to the command and service
modules is shown in figure 4.1-1, and the location with respect to the
launch-escape subsystem is shown in figure 4.6-1, A motor configura-
tion diagram is shown in figure 4.6-4.

Predicted performance parameters are presented in table 4.6-I. The
predicted thrust as a function of time is presented in figure L4.6-5.

Tower-jettison motor.- The tower-jettison motor is designed to
provide the propulsive force for removing the launch-escape subsystem
from the flight vehicle for a normal mission after approximately 35 sec-
onds of Saturn V second-stage burning, and from the command module during
an aborted mission, when the abort occurs before approximately 35 seconds
of Saturn V second-stage burning.

The tower-jettison motor had no function in the secondary mode of
tower Jjettison, and on BP-15 spacecraft the motor was not connected
electrically to the sequencing circuit.
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The motor configuration for this flight was basically of the
gualification design. The only change was the addition of approxi-

mately forty %-inch-diameter high-shear bolts on 2-inch centers around

the circumference at each end of the interstage adapter to reinforce
the spot-welded flanges. These bolts were added following an inter-
stage failure during the tower-jettison motor static test (see

fig. 4.6-1).

The location of the motor with respect to the command and service
modules is shown in figure L4.1-1, and the location with respect to the
launch-escape subsystem is presented in figure 4,61, A motor config-
uration diagram is shown in figure 4. 6.6,

Flight performance.- No motor instrumentation was used for the
BP-15 spacecraft launch-escape subsystem; therefore, actual motor per-
formance is unavailable. See figure 4.6-3 and 4.6-5 for predicted
performance of the individual motors.

The ignition signal for the launch-escape and pitch-control motors
was relayed from the sequencer at T+160.2 seconds. A review of photo-
graphic coverage of the flight revealed that the first noticeable flame
from the launch-escape motor occurred at approximately T+160.2 seconds,
Positive ignition of the pitch-control motor could not be determined
from the photographic coverage. However, the general trajectory and
tumbling rate of the jettisoned portion of the LES indicated that the
performance of the pitch-control motor, as well as the launch-escape
motor, was saticsfactory.

Recovery of the LES was not attempted; therefore, no postflight
analysis was possible.



L-L8

N

TABIE 4,6-I.- BP-15 SPACECRAFT LAUNCH-ESCAPE PROPULSION
SUBSYSTEM MOTOR PREDICTED PERFORMANCE

1

[At 70° F grain conditioning temperature and vacuum atmospheric pressure]

Parameter Iaunch Pitch
escape control
Ignition delay, ty, sec . . . . . . . . 0. 045 0. 015
Thrust rise time, tf: SEC v 4 v e e e e s . . 0. 090 0. 090
Burning time, t,, sec . . . . . . ... . . 3.230 0.625,
Action time, t_, sec . . . ... .. ... 6.200 1.005
Total time, tt’ SEC & v 4 e e e e e e 9.900 1.250
Maximum chamber pressure, p ., psia . 1,480 1.635
Average chamber pressure during burning time,

Py psia . . . . . 1,296 1,403
Maximum thrust, F___, 1bf . . . . . .. 161,700 2,800
Average thrust during turning time, Fb’ 1bvf . {147,500 2,390
Total impulse, I., 1bf-sec . 615,300 1,770

lBased upon historical static test
and motor geometric configuration.

F
max
» ~F 2
w [}
g 900’ F 3 a
= 77 & 80% Foax
tf _.(4) (- Time t P — Time
launch escape 0 pitch control
motor motor

Fi Ignition thrust

0 TFiring current application time

data, propellant burning rate,

Q
5t
6 B

td"

% 100 psia

a
Time

ISt

all motors




Nose cone
with Q-ball\ |

: Ballast enclosure
. Ballast —

cover

Pitch-control motor

Tower-jettison =
motor —\

Interstage Wi
adapter _\

Pitch~control motor
support assembly

\\ - -
~> Reinforcing bolts

Launch-escape motor -~

~——Structural
skirt

Launch-escape motor —\
thrust alinement ¢

fitting v

Launch-escape —

tower
Power systems and
instrumentation
wire harness
Command module

i/ attach fittings
. vz Y
/l"“‘\‘

Figure 4,6-1.- BP-15 spacecraft launch escape subsystem,

— I

Lhoig



*Joj0w ddedsa-youne| S37 GT-dg9 -°'2-9°p 24nbi4

Janub
. 7 peay 491ubj

m_Nwoz 3je40|ys4ad wniuowwe-3aptjinskjoy
’ / suitesb juejjadosd 21UIIU0Y
/ p sabpliyed
— : - : vhsm:_s 341MIOH
d Al
ainso|y’ .
s3aj|ed ajesjiu wnissejod-uoiog
abue}y utesb
uej|ado4
Uy juey| d
(dK3) . .
0S€ w“ ]
. & \\@mw {\er i00°92
BIP ,99°¢S ) L 18 > N\ ) 1 M~ | siozen
\\ ‘
3U0d |
ajzzop (dK3) .
oGE 4331ub)
w0L°€ST -
2Inso|d 9|zzoN
¢0°981

4-50




L-51

11

0T

(4o 04 ' wnndea uy) 1snayy payoipasd 030w adedssa-ysune; $IT6T-dg ~€-9°p ainb 4

935 /24ns0|d Aeja1 190uanbas wouy au |

L

9

S

/[

0¢

(1) 4

J I—

09

08

00t

0ct

ov1

L
AVIp

0T X 08T

191 ' 4 “Isnay g




—co

L-52

utelb jue|jadoiy

*J0j0W [0NUOd Y3lid §J7 Yesdaoeds GT-d9 -"{-9°t a4nbiy

sabpuied Jojeniul AMIOH —

ajzzopN

O20202020202000 007070 ¢

aInso|o
9jzzop

peay 1331ub|

gl :NN L




b-53

*(do04 e wnnoeA ut) SNy pajoipaid Jojow 1043U0d yid §37 GT-d8 -'G-9 " anbiy

1

23S ‘24ns0|2 Aeja4 433uanbas wody aw! |
01

g

9°

b

S~

™.

~

AN

-

00s9

000T

00st

000¢

00s¢

000¢

00s¢

1G] ‘4 ‘Isnay L



L5k

ainonis abeystaju
ulesb jue|jadoid M ﬁl. 9Sed 10]0|\
/ e 1

*jojouw uo0si13af 4amo3 S3 Yedoddeds G1-dd -"9-9° P a4nbi 4

1911ub|

wl0°8 ||||._
juej|adoid ajea0|ya4ad

wnjuowwe-apynskjod

3Ins0]d
pue 3|zzoN

. e e BRGNS

4ssssss mm

(70200002478 1787770272700
PR T lil

peay 1911ub| ase?)

|
N _ _ !
_

= - 5 -— 400792

1331UB| D

a|zzopN

/7 w09°G6S
3Inso|d
9|ZZOo|N




SOMNEDMNEEE™ h-53

k.7 Structures

Summary. - Examination of all spacecraft strain gage, pressure, and
scceleration data indicates that the spacecraft performed adequately in
the launch environment. Maximum values of «q did not exceed
1,000 (deg)(1b/sq £t) (minimum allowable aq = 5,800 (deg)(1b/sq ft)).
Static pressures measured on the CM conical surface were in agreement
with BP-13 spacecraft flight and wind-tunnel data. The spacecraft SM
venting system performed as expected. The CM instrumentation compart-
ment differential pressure differed radically from that of BP-13 space-

craft and reached a maximum value of 13.3 psi (pexternal < pinternal)

at tower jettison. X-axis oscillatory accelerations of 1.8g peak-to-peak -
were measured in the CM during the hold-down period prior to lift-off.
These oscillations had a frequency of approximately 10 cps and damped

out rapidly at lift-off. Adapter strain-gage data show low amplitude
oscillatory strains during the same time period.

Power spectral analysis of Y- and Z-axis accelerations show pre-
dominant frequencies of 16 and 40 cps during the boost phase. The
16 cps oscillation was also observed on the CM X-axis acceleration
records and was noted during the flight of the BP-13 spacecraft. Adapt-
er strain-gage data do not show that significant oscillatory bending
moments were produced in the adapter.

Service-module vibration records showed the expected response to
fluctuating pressure. Amplitudes and frequency distribution were simi-
lar to those observed during the flight of the BP-13 spacecraft. The
SM strain-gage data show low-level strain resulting from the shell mods
response with a meximum overall RMS value of 33 uin./in.

Strain-gage data from the SM and adapter indicate that both static
and dynamic loads were of an acceptable magnitude.

Acceleration data from instrumentation in an RCS engine nozzle
show levels of acceleration which were above the the design values.
An examination of nozzle vibration and SM vibration records indicated
no structural failure of the RCS assembly.

Fluctuating pressures on the SM and adapter surfaces were recorded
and, in general, verify the design specifications.

Structural description.- The structural assembly for BP-15 space-
craft consisted of the following components: launch-escape subsystem
(LES), command module (CM), service module (SM), insert, and adapter.
(See fig. h.1-1.)

"N DT A L
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The launch-escape subsystem consisted of a motor package and tower
truss structure, as shown in figure 4,7-1. The launch-escape tower
consisted of a 6AL-L4V titanium welded truss structure with four main
longitudinal members of 3.6-inch-diameter by 0.125-inch tubing, and
connecting members of 2.5-inch-diameter by 0.050-inch tubing. The
tower truss structure was 118 inches long and approximately 36 by 36
inches wide at the nozzle skirt attachment and 47 by 51 inches at the
CM attachment. The interface between the launch-escape motor and the
truss structure was a skirt which was a semimonocogue structure in the
form of a truncated cone. The skin was O.140-inch-thick 6AL-4V titanium
sheet which was attached to four titanium longerons. The skirt was
attached to the tower at the upper ends of the longitudinal members by
four bolts. Separation housings were bolted to the lower ends of the
longitudinal members and attached to the CM by means of four pyrotechnic
bolts. The launch-escape subsystem structural configuration was jidenti-
cal to that which is planned to be used on the production Apollo space-
craft.

The boilerplate command module was a semimonocoque-type aluminum
structure which consisted of skin, stringers, longerons, and frames.
The outer skin was 5456 aluminum with a thickness of 0.190 inch.

An inner compartment containing instrumentation, an electrical
power system, and ballast required to provide proper weight and center-
of-gravity location was provided in the command module. The command
module was attached to the SM longerons by three tension tie rods.
Compressive loads were carried by six pads, three of which were also
capable of taking shear loads. The CM-SM interface connections were
similar to production connections. See figure U.T7-2 for a typical
connection.

The boilerplate structural assembly shown in figure 4.1-8 consisted
of the service module, 141 inches long; the SM insert, 52 inches long;
and the adapter, 92 inches long;, meking an overall length of 285 inches.
In addition, a fairing 10.75 inches long was attached to the top of the
service module. The outside Qiameter of the assembly was 154.0 inches.
The types of construction of the three components were similar.

The semimonocoque structure of the service module consisted of an
aluminum skin which was reinforced with ring frames and longerons. The
insert and adapter had stringers in addition to the longerons. The
longerons were riveted to the skin and extended the entire length of
each section. The longerons were made up to two steel tees joined by
an aluminum web and were of constant depth in the insert and adapter.
The depth of the longerons in the service module varied linearly from
a maximum of 17.2 inches at the top end, where it mated with the command
modute, to 5.50 inches at the bottom end. The skin of all three com-
ponents was made of 2024-T3 aluminum alloy and was of a constant
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thickness of 0.16 inch over the entire boilerplate. The skin was rein-
forced with a total of 30 ring frames. The ring frames in the three
components were all made from 2024-Th aluminum with the exception of the
bottom frame of the adapter, which was made of steel. The ring frames
in the service module were evenly spaced at approximately 1l2-inch inter-
vals, whereas the ring frames in the insert and adapter were spaced at
varying intervals of approximately 7 to 10 inches. In addition to the
six heavy longerons, there were a total of 28 tee-shaped stringers mace
of T075-T6 aluminum in the insert and adapter sections.

The service module-to-insert and insert-to-adapter interfaces were

bolted connections consisting of 24 bolts each (4 bolts at each longeron).

The interface connection between the adapter and instrument unit con-
sisted of 32 bolts, evenly spaced around the circumference.

The parachute compartment of the command module was vented to the
space between the instrumentation compartment and the aft heat shield
by a connecting tube which passed through the instrumentstion compart-
ment. This space was vented to the service module through the clearance
in the tension ties holes. (See fig. 4.7-2.) The service module was
vented to the atmosphere by eight holes, 4.9 inches in diameter, in the
skin of the adapter at XA735. An air-conditioning barrier made from a

coated nylon cloth was installed at the interface of the adapter and
the launch-vehicle instrument unit (IU). Thus, the venting of the
service module and instrument unit were independent of each other.

Launch winds and preflight ag predictions.- Preflight oq pre-
dictions were based on the planned trajectory and upper atmospheric
winds obtained from rawinsonde soundings made at Cape Kennedy, Florida,
at T-14 hours. The launch (T-0) and the T-14 hour wind profiles are
shown in figure 4.7-3. The wind velocities were fairly low and the
variations from T-14 to T-O were small as shown in figure 4. 7-3. The
predicted angles of attack based on the preflight trajectory and the
T-0 wind profile are compared in figure 4. 7-4 to angles of attack from
a preliminary evaluation of Q-ball data by MSFC. A comparison of
aq profiles using these angles of attack is also shown in figure k4. 7-L.
As can be seen, aq did not exceed 1,000 (deg)(1lb/sq ft) during this
flight. This was a comparatively low value since the minimum allowable,
which occurs at maximum dynamic pressures, was 5,800 (deg)(lb/sq ft).

Command module static pressures.- Static pressures were measured
throughout the flight at nine points on the surface of the command
module. The locations of the static pressure instrumentation are shown
in figure %.2-5. Static pressure coefficients from T+20 seconds to
T+90 seconds are shown in figure L4.7-5. A typical comparison of the
flight-data coefficients with wind-tunnel data (ref. 6) at T+70 seconds
(M = 1.55) is shown in figure 4.7-6. The correlation between the

-
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flight-measured data and wind-tunnel data is good, and consequently
pressure loads obtained by the integration of these distributions agreed -
well with the predicted pressure loads.

Spacecraft venting.~ The pressure inside the compartment made up
by the service module, insert, and adapter, and the pressure in the
command module instrumentation compartment were measured and transmitted
throughout the flight.

The pressure inside the compartment made up by the service module,
insert, and adapter was measured in order to verify the adequacy of the
venting scheme used. This compartment was the only part of the space-
craft with planned venting. The venting consisted of eight equally
spaced 4.9-inch-diameter holes located 13 inches forward of the inter-
face between the adapter and the instrument unit (fig. 4. 7-7). The
purpose of the SM compartment venting is the following:

(1) To maintain the differential pressures (pinternal - pexternal>

within the bursting and crushing limits of the structure.

(2) To keep axial force relief provided by SM internal pressure
at a minimum.

(5) To maintain the differential pressure across the air-
conditioning barrier at less than 0.7 psi.

As shown in figure L.7-8, the flight-measured pressure inside the
service module, insert, and adapter compartment was slightly lower than
that predicted, except for the period from approximately T+67 to
T+30 seconds. Recorded SM internal pressure histories from the BP-13
spacecraft and the BP-15 spacecraft show close agreement. The compari-
son of the SM, insert, and adapter compartment pressure with that in the
instrument unit, as shown in figure 4.7-9, verifies that the differential
pressure across the air-conditioning barrier did not exceed the O.T-psi
limit. The data verify that the venting scheme used was adeguate.

The command-module instrumentation compartment pressure was not
required for verification of the venting scheme for the compartment made
up by the service module, insert, and adapter. The command-module in-
strumentation compartment was not deliberately vented nor was it delib-
erately sealed. Figure 4.7-10 shows the pressure time history of this
compartment for both BP-15 spacecraft and BP-13 spacecraft. It can be
seen from this figure that these pressure histories differ gquite radi-

cally. A meximum differential pressure of 13.3 psi (pexternal < pinternal)

was recorded prior to tower Jettison. It is apparent that the BP-15
spacecraft instrumentation compartment was of much tighter construction
than the BP-13 spacecraft. It can be seen in figure 4.7-10 that at the

OOkl
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approximate time of LES jettison (T+160.2 sec) there was a marked in-
crease in the leak rate of BP-15 spacecraft command-module instrumen-
tation compartment.

The results of a venting analysis indicate that the observed de-
crease in pressure could have resulted from venting through a leak area
of approximately O.75 square inch. This leak area could have been ob-
tained by one tower bolt clearing its hole completely (fig. 4. 7-11) or
by the loosening of the washers around each bolt, allowing venting
through the clearance around the g-inch-diameter bolt in the l-inch- |
diameter hole. However, a rigorous explanation of the increased leak
rate at tower separation cannot be offered with the available informa-
tion.

It should be noted that the tower bolt, attachment scheme, and
cabin construction used in BP-15 spacecraft are not of production space-
craft configuration.

Quasi-steady flight loads.- Since the SA-T trajectory was approxi-
mately a zero-1lift trajectory, the quasi-steady lateral loads were low.
The maximum oq experienced by the BP-15 spacecraft was
990 (deg)(1b/sq ft) compared with 4,600 (deg)(lb/sq ft) for the BP-13
spacecraft. Inertial loads at the interface of the adapter and IU
have been calculated at the maximum og flight condition
(eq = 990 (deg)(1b/sq £t) at T+75 sec). Time histories of vehicle
longitudinal and lateral accelerations are presented in figure L. 7-12.
Bending moments resulting from air lcads at maximum aq were also
determined. The net bending moment on the adapter-IU, including air

and inertial loads, was 1.31 X lO6 in-1b for the maximum ag flight
condition. Meximum net load was small, approximately 25 percent of
that experienced by the BP-13 spacecraft.

The axial forces at XA 722 (adapter—IU interface) were very simi-

lar for the BP-13 and BP-15 spacecraft. The BP-15 spacecraft experi-
enced slightly lower axial loads than the BP-13 spacecraft because of
smaller angles of attack and dynamic pressures. Predicted axial force

at XA 722 (adapter-IU interface) for the BP-15 spacecraft is compared

with thet calculated from flight data for both the BP-15 and BP-13
spacecraft in figure 4.7-13. The predicted axial force for the BP-15
spacecraft is lower than the actual force, due mainly to the lower q
of the preflight trajectory and to the small difference in predicted
and actual SM internal pressures.

~COUNERENTAE
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LES pitch rates.- LES jettison and the resulting LES motions were
determined from engineering film taken at Cocoa Beach and Melbourne,
Florida. The initial LES motion was forward and translational in the
negative Z-axis direction. During pitch-control-motor thrust decay,
the IES pitch rate began to increase. Between 3 and 4 seconds after
initiation of the LES jettison sequence, the pitch rate had built up to
a steady-state value of 675 deg/sec. Predicted LES steady-state pitch
rates were T93 deg/sec‘ Stress analysis, with loads produced by the
observed pitch rate, shows that the tumbling rate was sufficient to
cause yielding in the LES ballast support plate. The analysis shows
that the tumbling rate was not sufficient to cause separation of the
LES components from the main LES assembly. The quality of the best
films available was not good enough to verify that no components of
the LES separated from the assenbly.

X-axis vibrations.- An accelerometer system designed to measure
X-axis acceleration was located in the CM at the position shown in
figure 4.2-2. The system was ranged for amplitudes from -2.0g to +10.0g
and for a freguency response from O to 30 cps.

The X-axis acceleration records, from the measurement identified
as CAOOlA, show a 10-cps oscillation having a peak-to-peak amplitude
of about 1.8g which damped out rapidly at 1lift-off.

The 1.8g value occurred after S-I engine ignition but before vehicle
release. Data obtained from the adapter strain-gage system show maxi-
mum oscillatory strains during hold-down with peak-to-peak values of
80 pin. /in.

The maximum oscillatory X-axis acceleration recorded after lift-off
was about 0.5g peak-to-peak and occurred at maximum dynamic pressure
(T+73 sec). The majority of the X-axis vibration energy after lift-off
is shown by power-spectral-density analysis to be concentrated at a
frequency of approximately 16 cps (fig. 4. 7-14). The 16-cps oscillation
was also observed in the Y- and Z-axis acceleration records from the
BP-15 and BP-13 spacecraft. Further analysis will be required to deter-
mine the nature of this oscillation.

Y- and Z-axis accelerations.- The Apollo BP-15 spacecraft was in-
strumented with six accelerometers to measure accelerations along the
Y- and Z-axes of the vehicle. Biaxial measurements were provided in the
forward extremity of the LES, in the command module, and in the service
module. The LES or tower accelerometers were ranged for +2.0g, and
CM and SM accelerometers for 30.5g.

Tower Y- and Z-axis acceleration measurements at the limit of the
instrument range, #2.0g, occurred periodically from 41 to TO seconds
after lift-off. Examination of oscillograph records and narrow-band

NI DRI
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analyses of the tower-accelerometer data show that the majority of the
response energy was concentrated at frequencies of approximately 16 and
42 cps.

The command module Y- and Z-axis accelerations exhibited similar
waveforms at corresponding times. Both command-module and tower accel-
erations show energy at 16 and 43 cps which indicates excitation of
free-free body bending modes having frequencies of 16 and 43 cps. Ex-
amination of the power-spectral-density plots presented in figure k. 7-15
showed the majority of energy to have been concentrated at frequencies
well above that of the first few body-bending modes (first bending mode
frequency = 1.9 cps). The measured response would not be expected to .
contribute significantly to the overall structural loads, and no evi-
dence of any significant oscillatory bending moment is shown on the
oscillograph records of adapter strain or RMS histories of adapter
strain.

As during the flight of the BP-13 spacecraft, the only excitation
of the first free-free vehicle lateral body-bending mode, observed on
the oscillograph records, occurred at S-IV engine ignition. Maximum
tower-acceleration values during staging were below O.8g peak-to-peak.
Bstimated inertial loads produced by this oscillation would produce
less than 5 percent of the design allowable bending moment (based on
adapter-IU interface allowable loads). The Y- and Z-axis accelerations
of the command and service modules verified a1l conclusions drawn from
the tower Y- and Z-axis acceleration measurements since they exhibited
the same frequencies at smaller amplitudes.

SM radial vibrations.- The service module was instrumented with
three accelerometers with a range of #50g. The frequency response
range of the accelerometer identified as SAOO86D was from 20 to 1,000 cps.
Accelerometers identified as SAOO87D and SAOO88D had frequency-response
ranges from 20 to 790 cps. Two similar instruments were installed in
the SM adapter. All radial vibration accelerometers were installed on
the flanges of the frames adjacent to the skin to measure radial vibra-
tion of the SM and adapter shells at the positions shown in figure k.7-16.

Inspection of the SM radial vibration records showed random re-
sponse as during flight of the BP-13 spacecraft. Random vibration
response, RMS values of 11 to 15g, were determined from lift-off data.
These vibrations died out rapidly as the wvehicle rose, and the noise
environment became less severe. The vibration response began to in-
crease at T™+40 seconds and continued to build up as free-stream dynamic
pressure increased and the vehicle approached transonic Mach numbers.
Root mean square (RMS) accelerations from SAOO86D reached a maximum
of 21g RMS at T+50 seconds and decreased sharply to T7.5g RMS at
T+55 seconds. From T+55 seconds to T+74 seconds, the RMS value remained
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fairly constant. After maximum dynamic pressure at T+73 seconds, the
RMS value gradually decreased as Mach number increased and dynamic
pressure decreased.

The vibration data recorded from SAOO8TD and SA0088D exhibited
the same general trend as SAO0O86D with smaller RMS values. Maximum RMS
acceleration values from SAOO87D and SAQ088D were 18g and 15g, respec-
tively. A cursory examination of the adapter radial vibration data
recorded through MSFC telemetry show the same general trends as data
from SA0086D, SAOO8TD, and SA0088D, but with smaller RMS values in the
comparable frequency range. BRMS histories of the SM radial vibration
are presented in figure 4. 7-17.

The rapid decrease in radial vibration amplitudes noted in the
preceding paragraph may te attributed to the decrease in fluctuating
pressure which occurred at the same time as the decrease in vibration
amplitude (T+50 sec, M = 0.81). The decrease in fluctuating pressure
amplitudes was expected and can be associated with changes in the aero-
dynamic flow at this Mach number and angle of attack. TFluctuating
pressure and radial vibration records from the BP-15 spacecraft show
the same trends as BP-13 spacecraft, and the trend of fluctuating pres-
sure history in this Mach number range has been verified in wind-tunnel
tests (ref. 6).

The recorded vibration response of the SM can be attributed to the
excitation of shell modes of the SM insert and adapter structure by the
fluctuating pressures acting on the SM walls. Evidence supporting this
conclusion is presented in the RMS histories of radial vibration and
fluctuating pressures of figures 4.7-17 and 4.7-18. A comparison of
these two plots shows very good time correlation between the RMS histories
of radial vibration and fluctuating pressure.

Power spectral analysis of vibrations recorded from SAOO86D and
SAOO88D shows vibration energy concentrated at 330 cps (fig. 4. 7-19).
Spectral analysis of data from SAOO87D shows similar concentrations.

A1l radial vibration data from the BP-15 spacecraft show good agreement
with BP-13 spacecraft data (figs. 4.7-19 and L.7-20). The narrow-band
analysis shown in figure k4. 7-19 shows energy concentrated at resonant
frequencies which were determined in ground vibration testing of the
BP-9 spacecraft (a similar boilerplate vehicle) verifying the conclusion
that the observed response was that of shell mode-response.

The low level of SM strain data (33 pin./in. RMS) recorded during
this flight indicates the observed shell-mode excitation did not pro-
duce stress levels which would damage the BP-15 spacecraft structure.
Strain-gage power spectral densities are presented in figure 4.7-21
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and show 2 low level of strain energy. The SM strain and acceleratior
power spectral densities show energy concentrations at the same fre-
guencies.

RCS engine nozzle vibration.- The BP-15 spacecraft was provided
with an instrumented simulated RCS quad assembly. A detaililed descrip-
tion of the RCS assemblies is given in section 4.8. Two accelerometers
were mounted in the CW engine nozzle. The instruments were located as
shown in figure 4.8-5 with both accelerometers ranged at #00g. The
nozzle X-axis accelerometer SAOO91D had a frequency response range of
20 to 1,000 cps, and the accelerometer SAOC092D had a frequency response
range of 20 to 450 cps.

The RMS histories of nozzle vibrations are presented in
figures 4.8-19 and 4.8-20. The RMS histories of SM radial vibration
presented in figure 4,7-17 show excellent time correlation with the
RMS histories of nozzle vibration which indicates that both SM and
nozzle vibrations are excited by the same forcing functions. Dynamic
design-load factors for these nozzles were 135g, O-to-peak, at the

.center of gravity of the nozzle. The load factors were applied paral-

lel to the vehicle X-axis and perpendicular to the nozzle centerline
in the vehicle Y-Z plane.

Maximum acceleration value recorded from the nozzle X-axis measure-
ment (SAO091D) was 1Thg, O-to-peak, (T+73.7 sec). Maximum acceleration
value in the radial direction (SA0092D) was 160g, O-to-peak, T+48 sec).
Correcting these maximum values to the design load condition (G levels
at nozzle center of gravity) yields a maximum of 15lg parallel to the
X-axis, and 139g in the radial direction. The recorded wvalues of
acceleration in both directions were above the RCS-mount-assembly design
values. Resultant accelerations significantly higher than design values
can be determined by vectorial summation of the X-axis and radial nozzle
accelerations.

Power-spectral-density analysis of the nozzle X-azaxis and radial
vibrations are presented in figures 4.8-21 and 4.8-22 and show the
ma jority of the energy to be concentrated at freguencies which can be
associated with nozzle cantilever modes of vibration.

Vibration records from the nozzle and SM accelercmeters do not
give any indication of a structural failure of the RCS assembly. Fur-
ther analysis is required to determine the significance of these vibra-
tiomns.

Strain gages.- There were six strain gages mounted on the space-
craft structure. Two strain gages were mounted in the SM and four in
the adapter. The SM strain gages were located to measure the circum-
ferential tensile and compressive strains in the frames. The adapter
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strain gages were located to measure longitudinal tensile and compres-
sive strain in the stringers.

The strain gages in the SM were located on the inner flange of the
frame at XA 940.14 and circumferentially at 62.25° and 77.25° from the

+Z-axis. The adepter strain gages were located on the inner flange of
the tee-section stringers on the Y- and Z-axis at XA 736 at a radius

of 76 inches. Locations of SM and adapter strain gages are shown in
figure 4. 7-16. Strain-gage ranges and frequency response are shown in
table 8.1-I.

Data validity from the strain gages is questionable after T+85 sec-
onds due to the presence of thermal strain. No accurate method of
analyzing the amount of thermal strain present in the structure is avail-
able.

The SM strain-gage system was ranged for #500 pin./in. A time
history of the SM strain recorded by instrument numbers SA2121S and
SA2120S is shown in figure 4.7-22. The strain gage identified as
SA2121S began to measure dynamic strain at approximately 0.1 second
after S-I ignition with a peak-to-peak value of 110 pin. /in. at
T+0 seconds. The strain decreased from T+0 until approximately T+6 sec-
onds at which time the strains were too low to be read. Beginning at
T+41 seconds, the dynamic strain increased to a maximum value of
130 pin. /in. peak-to-peak, at T+L9 seconds, and then tapered off to
zero at approximately T+90 seconds. A power-spectral analysis of the
strain data recorded from SA2121S at a time slice from T+48 to T+50 sec-

“onds showed that the maximum energy was concentrated around 330 cps, as
shown in figure 4.7-21. The oscillatory strain recorded from instrument
SA2120S showed generally the same trends as SA21215 except the magni-
tude was somewhat smaller. This can be seen in the RMS time histories
of the strain data recorded from the two gages shown in figure 4. 7-23.

The quasi-steady state level of the strain data from the two SM
strain gages was determined by utilizing a 2l-point averaging data
processing routine (see section 7.4). From this analysis, it was deter-
mined that the quasi-steady state strain indicated by SA2120S was small
until T+52 seconds at which time the quasi-steady state strain increased
to approximately +4O uin./in. and then gradually decreased to zero at
approximately T+73 seconds. Instrument SA2121S indicated zerc quasi-
steady state strain until T+54 seconds, at which time it decreased to
approximately ~20 uin./in. and then gradually increased to zero at
approximately T+67 seconds. This change in quasi-steady state strain
is shown in figure 4. 7-24. The variation of quasi-steady state strain
in the service module frames may be attributed to the influence of the
change in the circumferential static pressure distribution resulting
from the change in Mach number and altitude with time.
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The adapter strain-gage system was ranged from *500 pin./in. The:
time histories of the strain measured by the four adapter gages are
shown in figure 4.7-25. The data given in this figure do not include
the static strain (due to 1lg axial load) of -18.4 pin. /in. at that
location. The maximum compressive strain measured was -120 pin. /in.
at approximately’T+67 seconds from instrument AAO19T7S. From the adapter
strain data, the quasi-steady state flight loads, axial force, and
bending moment at station XA 736 were determined. A time history of

these loads are presented in figure 4.7-26. In referring to these loads,
it should be realized that the accuracy of the loads determined from
strain-gage data is questionable because of the low magnitude of loads
and strains experienced during the flight.

Overall dynamic loads through the launch phase of the flight at
the adapter section were shown to be very small, having a maximum RMS
value of 5 uin./in. During holddown, however, the adapter experienced
strains of 80 uin./in. peak-to-peak, with a maximum RMS value of
10 pin. /in. A comparison of steady-state adapter strain levels (deter-
mined from a 2l-point averaging routine) with real-time total strain
plots was made. This comparison shows very small differences between
steady-state and total strains, verifying the conclusion that no signi-
ficant oscillatory bending moments were produced in the adapter.

Examination of all strain-gage data indicates that the structure
performed adequately in the flight environment encountered.

Fluctuating pressure.- The fluctuating pressures generated by the
turbulent flow over the spacecraft SM were measured by means of 13 pres-
sure transducers. The pressure range of all transducers was O to 15 psia
with the frequency response of each shown in table 8.1-I. The trans-
ducers were mounted sc as to sense pressures on the SM external surface.
Locations of the transducers are shown in figure L. 7-16.

Recorded pressures at lift-off were invalid since the ambient
static pressure was at the upper limit of the transducer range. As
dynamic pressure increased during the flight, there was a gradual in-
crease in fluctuating pressure amplitude until T+50 seconds, when a
sudden decrease occurred (fig. 4.7-18). The trend of the data around
T+50 seconds is associated with changes in the character of the local
flow at this free-stream Mach number (0.9) and has been verified by
wind-tunnel tests. After T+50 seconds, the levels agein gradually in-
creased through maximum dynamic pressure (T+73 sec). As the free-stream
dynamic pressure decreased, the fluctuating pressure levels decreased.

The highest noise level measured was in the vicinity of an RCS
nozzle. The fluctuating pressure history in the area around this nozzle
did not show the drop off at T+50 seconds (fig. 4. 7-18(d)) exhibited by
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the data obtained from all other transducers. This is attributed to
the unigue location of this transducer which was directly beneath a
forward-facing RCS nozzle as shown in figure 4. 7-16 (measurement SAC165P).

RMS pressure histories from all fluctuating pressure transducers
are shown in figure 4.7-18. A comparison of flight-measured noise
environment with Apollo design environment for several spacecraft zones
is given in figure 4. T7-27.
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Motor package

Tower truss structure

Figure 4,7-1, - Apollo BP-15 spacecraft launch
escape subsystem structure.
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/— Command module

Command module Tension tie

longeron

Clearance
for venting

Seal

_/ | Service
: module
Ball joint

Service module
longeron

Figure 4,7-2.- Detail of command module-service module interface
for BP-15 spacecraft.
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Saturn SA-7 instrument unit (XA722).
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Octave band frequencies, cps

(c) External X 838 to Xp 910.

Figure 4.7-27.- Continued.

o127

X910

Xp8 38

Xp722



4-128

*popn)auo) -°Lg-L"t Mnbi4
‘geg Yx 01 zzL Vx rewsixa (p)
sdd “safouanbayy pueq aae}aQ

2°IT 9°6 8°C2 Wp'T OTL sSE€ 08T 06 Sy v'ce
NP°GNB'Z AP'T OTL 6S€ 08T 06 Sy v'22 Z°11

0t
zeLYx & tedtl
i oe e g sassiieResnanss 0oel
A 8egVx B i i
Y . H » H
n 3
n iaghe s :
74 il
m..-_“ T ——— HHH H 0pT
rY 00 e e I § 8
n 10 s
- [l (11
V4
» i o T
5
/ 1 2 anjeA SWY |jes3r0
i 335 st 091
O FHe +H u_
awi) Kue je wnuixew ‘ejep 1461} € T-dE «-mme: oLt
mm awpy Aue je wnuixew ‘e3ep W6IY GT-dg ww=sesn
M uoied1§193ds ubisap ojj0dy @ ===
081

gp /j9A9| 3unssaid punog



COMNEIDENELA L 4-129

4,8 Reaction Control Subsystem

An instrumented reaction control subsystem (RCS) package was car-
ried on the BP-15 spacecraft in order to define the aerodynamic heating
and vibration levels to be exrerienced by the RCS package during launch.
This information was not available from any previous flights, wind-tunnel
tests, or hardware-development tests.

Description.- The RCS for the BP-15 spacecraft consisted of one in-
strumented, simulated RCS guad assembly and three uninstrumented, simu-
lated quad assemblies, all located at Xg 294 on the service module (SM).

The instrumented unit, quad A, was located near the -7 axis at 187.25°
as shown in figure 4.8-1. The uninstrumented units, quads B, C, and D,
were located at successive 9d° intervals from quad A.

Quad A, shown in figures 4.8-2 and 4.8-3, consisted of four simu-
lated RCS engines, the insulated quad housing, and the engine-supporting
bracket. The quad housing was fabricated from 2024T3% aluminum. The dis-
covery of a housing fabricaticnal error necessitated the addition of a
k. 50-inch by 5.50-inch by 0.2% inch aluminum plate under the clockwise
(CW) roll and counterclockwise (CCW) roll engines for structural purposes
(fig. 4.8-2). These aluminum plates will not be on prototype hardware.
In all otner respects, the housing was prototype hardware. A one-quarter
inch thickness of cork insulation was bonded to the cuter surface of the
housing for thermal protectior. The engine-supporting bracket was fab-

ricated from 6061T6 aluminum and was a prototype item., The chambers
were fabricated from L-605 colbalt base stellite superalloy and consisted
of a cylindrical combustion clamber and & nozzle which were welded to-
gether at an expansion arees ratio (Ae/At) of approximately 7.7. The com-

bustion chambers had a characteristic length (L*) of 8.5 inches. All
four engines were identical. The chamber differed from the prototype
chamber in several respects as listed in table 4.8-I. The two chambers
are compared visually in figure 4.8-L. The injector heads were fabri-
cated from aluminum. The design of the BP-~15 spacecraft engine injector
head differed substantially from that of a prototype injector head be-
cause of the necessity for passing the instrumentation leads through it.
Although the design was "boilerplate"”, the thermal capacitance and the
hest-transmission characteristics of the BP-15 spacecraft injector heads

lThe chamber is defined as that portion of the engine in which the
propellants react and high-temperature gas flow occurs. The chamber con-
sists of a combustion chamber, throat, and nozzle (fig. 4.8-2). An engine
consists of the chamber and its associated injector head and wvalves.

Ao o aararas el



4-130 LD ETERAL -

were essentially the same as for a prototype injector head. Propellent
valves and lines were not installed for this flight. The engine was
mounted to the quad housing at the injector head so that there was no
direct contact between the chamber and the housing. A 0.060-inch-thick
phenolic-fiberglass laminate insulating washer reduced thermal conduc-
tion between the injector head and the housing. The method of mounting,
shown schematically in figure 4.8-5, is identical for prototype hardware.

Quads B, C, and D were dummy assemblies. The engines consisted of
solid 4140 stainless steel combustion chambers and throats which were
overwrapped with a phenolic-fiberglass laminate. The laminate extended
to form the nozzle as shown in figure 4,8-6, These dummy engines were
heavier than the Quad A engines, but were similar in aerodynamic config-
uration and were of the same configuration as those flown on the BP-13
spacecraft. The gquad housings were fabricated from 0.160-inch-thick
4130 stainless steel.

Instrumentation. -~ The RCS instrumentation for the BP-15 spacecraft
consisted of 16 temperature sensors mounted on the positive pitch (+P),
CCW roll, and negative piten (-P) engines, and on the housing structure,
as shown in figures 4.8-7 to 4.8-9. Two accelerometers were mounted in
the CW roll engine nozzle {fig. 4.8-8). The +P, CCW, and -P engines had
temperature sensors located on the nozzle, engine flange, injector head,
and on the housing immediately below the engine. The +P and CCW engines
also have temperature sensors mounted in the combustion chamber just up-
stream of the throat. A temperature sensor was mounted on the underside
of the quad housing roof and on the engine-supporting bracket. The tem=-
perature sensors on the injector heads and on the engine supporting
bracket were resistance thermometers. The other temperature sensors

were Chromel-Alumel thermocouples contained in a %-inch-thick columbium

sheathed case with internal insulation of magnesium oxide., The thermo-
couples were mechanically clamped to the chambers and housing. There
was no direct contact of the Chromel-Alumel thermocopule wires with the
surface of the chambers or housings. The thermocouple mounting arrange-
ment and details of the thermocouple design are shown in figure 4,8-10.

The two accelerometers were mounted in the CW engine nozzle perpen-
dicular to the engine axis, as shown in figure 4,8-11, Vibration was
measured both in the direction of spacecraft X-axis and in the direction
of an axis approximately perpendicular to the spacecraft X-axis. Epoxy
potting compound was added to secure the accelerometer cables to the CW
engine nozzle,

RCS temperature.- Since no RCS temperature data from the BP-13
spacecraft mission or from wind-tunnel tests were available for compar-
ison with RP-15 spacecraft data, a theoretical analysis was performed to

LIRS .
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predict the maximum temperatures which would be attained on the BP-15
spacecraft RCS package. This analysis predicted maximum temperatures
at the nozzle exit planes of the +P, CCW and -P engines of 2,180° F,
2,000° F, and 1,800° F, resjectively, which occurred at T+154 seconds.
The predicted values at the various sensor locations are listed and
compared with measured valuss in table 4,8-II. The large discrepancies
evident between predicted and actual values indicate either significant
errors in the analytical approach used for the temperature predictions
or invalid temperature data.

Examination of the temperature data indicates that 15 of the 16
temperature sensors functioned during the mission. The thermocouple
located 1 inch from the exi: plane of the +P engine nozzle (measurement
SRS877T) did not function, and no data were obtained for that location.

The time-temperature data from the 15 functioning sensors are shown
in figures 4,8-12 to 4.8-14, grouped by engine. The thermocouple data
from the engine-supporting bracket and the underside of the quad-housing
roof are shown individually in figures 4,8-15 and 4.8-16. The data are
plotted as a 5-point average of the individual data points.

After an initial temperature drop resulting from aerodynamic cooling,
the temperature of .the +P engine began to increase at T+40 seconds. Max-
imum temperatures of 603° F and T45° F, as shown in figure 4.8-12, were
reached at the +P engine throat and flange, respectively, at approximately
T+132 seconds. Maximum temperatures of approximately 1,080° F and 830° F,
occurring at T+154 seconds, were predicted for the throat and flange.

The +P engine injector head, which was the hottest of the three injector
heads monitored, reached a maximum temperature of 159° F at T+850 seconds.
This is well below the predicted value of 360° F.

The CCW engine temperature data, figure 4.8-13, also show an initial
drop, with temperature rise beginning at T+40 seconds, similar to that
of the positive P engine, A maximum temperature of 775° F was reached
1.3 inches from the nozzle exit plane of the CCW engine at T+150 seconds.
This was the highest temperature recorded by any of the sensors during
the flight, but is considerably less than the predicted value of 1,865° F.
The CCW engine throat temperature reached a maximum value of approximately
360° F at T+160 seconds, as compared with a predicted velue of 1,300° F
occurring at T+154 seconds. The CCW engine injector head reached a maxi-
mum temperature of 142° F at T+525 seconds and stabilized at that point,
well below the predicted value of 382° F.

The temperatures attaired on the -P engine were far below predicted
values (see table 4,8-1II), the highest temperature recorded for this en-
gine being 205° F on the nozzle occurring at T+200 seconds. The -P engine
injector head reached a temperature of approximately 116° F at T+850 sez-
onds and was still increasirg slowly at that point.
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The capability of the guad housing and supporting bracket to modu-
late the injector head temperatures by permitting the heat to diffuse
throughout the structure is illustrated by the relative insensitivity of
injector head temperature to engine flange temperature. Although flange
temperatures varied from a maximum of 745° F on the +P engine to a max-
imum of 122° F on the -P engine, the three injector head temperatures
remained within 50’ F of one another through T+850 seconds. Data from
the three injector heads and the engine-supporting bracket are shown in
figure 4.8-17. These data indicate that by T+850 seconds, the +P and
CCW engine injector heads had attained an equilibrium condition in which
heat input from the chamber was equal to heat output to the housing and
engine-supporting bracket. The engine-supporting bracket temperature
was still increasing at T+850 seconds but was starting to peak at that
point. The -P engine injector head was still increasing in a linear
manner at T+850 seconds resulting from heat input from both the engine-
supporting bracket and the -P chamber. The temperatures of the +P, CCW,
and -P engine housings, and of tne gquad-housing roof are shown in fig-
ure 4,8-18. The maximum temperature difference between these four
sensors was 55° F dQuring the high-heating period of launch; and at
T+850 seconds, the four sensors were within 25° F of one another, indi-
cating the capability of the structure to distribute the heat input from
the chambers.

Because of the discrepancies between predicted and measured tempera-
tures, a substantial amount of additional analysis will be required to
eveluate further the instrumentation and the analytical approach in order
to relate the data from the BP-15 spacecraft flight to temperatures which
will occur on later flights with prototype and qualified hardware. The
results of the additional analysis will be given in a supplemental report.
Substitution of prototype hardware is expected to result in increased
nozzle temperatures since the thinner L-605 nozzle wall of the prototype
engine will have a lower thermal capacitance and an increased thermal
resistance to heat conduction down and circumferentially around the
nozzle. The aluminum injector head temperatures will also be higher on
prototype engines since the ‘thermal conductivity of the molybdenum com-
bustion chamber is approximately nine times greater than that of the
L-605 combustion chamber of BP-15 spacecraft, thus facilitating greater
heat conduction into the injector head from the chamber, The resultant
prototype injector head temperature increase will be tempered by the
addition of the propellent valves to the injector, which adds thermal
capacitance to the injector. The magnitude of these temperature in-
creases has not been established at this time.

RCS vibration.- The RMS time histories from the two accelerometers
mounted in the CW engine nozzle are shown in figure 4.8-19 for the X-axis
and in figure 4.8-20 for the perpendicular axis. Vibration response began
to increase at T+20 seconds, reaching 4Og RMS at T+kl seconds in the

o L o
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X-axis, and reaching 51g RMS at T+49 seconds in the perpendicular axis.
A sudden decrease in g levels was experienced during the period of T+kg
to T+54 seconds. The RMS vibration level then increased to a maximum
of ¥7g in the X-axis at T+70 seconds, approximately L45g in the perpen-
dicular axis at T+63 and T+68 seconds. The vibration level decreased
following maximum dynamic pressure, and neither sensor indicated an out-
put beyond T+120 seconds, The vibration data obtained were above the
design 1limit. Power-spectral-density plots for a 2-second time period
between T+48 and T+50 secords for the X-axis and perpendicular axis are
shown in figures 4.8-21 and 4,8-22. Most of the power in both axes was

concentrated around 190 cps, at which frequency peaks of 100 to 115 ge/cps
occurred. Further analysis is required to relate these data to values
which can be expected with prototype hardware. For additional analysis

in the report refer to section 4,7.
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tZ 7,25°
Q~ Quad C
Quad D
277.25° 5
-Y | oy
—97.25°
Quad B
> Quad A
| 187.250 View looking aft
X5341
+P engine
: X.294 —_————] N
S / :\Counterclockwise engine
Clockwise engine P elngine

XSZOO

a Centerline of RCS quads B, C, & D is at Xg292.9

Figure 4,8-1.- Location for service module RCS quads on BP-15 spacecraft.
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CW engine

° _ Combustion
s chamber
Throat
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-P engine
187.25°

Figure 4.8-2.- Service module RCS quad A on BP-15 spacecraft,
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Figure 4,8-3.- Interior view of service module RCS quad A for BP-15 spacecraft,
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Figure 4.8-4,- Spacecraft BP-15 quad A and prototype RCS chamber design.
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Launch escape subsystem

Command module

+Z

___UNELASSIFIED-

Main hatch
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North

RCS quads
_ Direction of
Service module launch azimuth
—— RCS quad A
" Spacecraft
Positive | maneuver & | Linear | Angular
Direction Axis Moment | direction | symbol velocity | velocity
Longitudinal X L YtoZ Roll o u p
Lateral Y M ZtoX Pitch © v q
Verttical Z N XtoY Yaw ¢ w t

Figure 4.8-7.- MSC coordinate axes and notation system for Apollo
boilerplate and airframe, manned and unmanned spacecraft,
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+X
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(Counterclockwise
engine throat)
SR5879T
(Counterclockwise

engine nozzle)

+P engine

Injector

SR7134T — 1N

(Counterclockwise engine injector)
Flange—\h\

Clockwise engine

| Counterclockwise
engine

¢ — -1

Nozzle

Combustion chamber

SR71237
(Counterclockwise engine flange)

SA0091D
(X-axis accelerometer)

-P engine
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(Quad housing roof)

4.58" ! 1,3
\7 [~ . - ( /,/
A\ -t

Counterclockwisge
engine

Clockwise engine

SA0092D (Perpendicular axis
accelerometer)

SR7161T
(Counterclockwise engine housing)

Engine supporting bracket —

—~——SR5065T (Engine supporting bracket)

Figure 4.8-8.- Service module RCS package instrumentation focations
for clockwise and counterclockwise roll engines, engine supporting
bracket, and quad hous ng roof on BP-15 spacecraft.
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Figure 4.8-9.- Sewice module RCS package instrumentation locations for
+P and -P engines, engine supporting bracket, and quad housing roof on
BP-15 spacecraft.
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Figure 4.8~11 .- Service module RCS accelerometers mounted in the clockwise
engine nozzle on BP-15 spacecraft,
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4.9 Acoustics

The Apollo BP-15 spacecraft was instrumented to measure the exterior
acoustic environment during flight. This enviromment consisted of
noise generated by the launch vehicle and noise generated aerodynamically.
Available wind-tunnel data (ref. 6) on the Apollo spacecraft configura-
tion indicated that the aerodynamic noise enviromment could, for a nom-
inal Saturn trajectory, reach a maximum sound pressure level (SPL) of

168 decibels (db) (ref: 0.0002 dynes/cmg) at the CM-SM interface. This
location was instrumented on the BP-13 spacecraft (ret. 10), and an

SPL of 166 db (ref. 0.0002 dynes/cmg) was measured. It was anticipated
that this sound pressure level would also be measured on the BP-15 space-
craft.

Therefore, the BP-15 spacecraft was instrumented with thirteen
fluctuating pressures and one microphone to verify the wind-tunnel pre-
dictions. Eleven of the fluctuating pressures and the microphone were
installed on the service module and two fluctuating pressures on the
adapter. The transducers are listed and the specific locations are
indicated in figure 4%.2-4 and table 8.1-1.

The piezoelectric microphone sensed the applied differential
pressure, i.e., pressure variations, and converted the pressure to a
linear voltage that was proportional to SPL.

The fluctuating pressure transducers, however, were absolute pres-
sure gages. The instrument sensed the static pressure and the static
pressure variations. The pressures were converted to a linear voltage.
Since the pressure transducer had to accommodate atmospheric pressure
at lift-off, an instrument with a O to 15 psia range was used. This
range determined a lower limit for useable fluctuating pressure data.

A B&K spectrum analyzer was used to make overall and one-third
octave band SPL time histories for the frequency capabilities shown in
table 8.1-I. A time discrepancy was apparent in the reduced microphone
data. By correlating an osecillograph recording with the reduced data,
this discrepancy was reduced to a systemmatic error of 0.4 second.

The overall SPL level time history for the microphone is presented
in figure 4.9-1. The launch vehicle noise began when the launch vehicle
was ignited at T-2.4 seconds and reached a maximum of 14 db

(ref. 0.0004 dynes/cme) at T41 second. As the vehicle accelerated, the
sound pressure level decreased until it dropped below the instrumenta-
tion capabilities at T+10 seconds.

—ndeQONFADENFPRE
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A one-third octave band analysis of the launch vehicle noise at
T+1 second is presented in figure 4.9-2. This analysis shows that the
maximum SPL had a broad band spectrum and is relatively flat from
125 to 600 cps.

Figure 4.9-%3 is a comparison of the overall launch vehicle noise
time histories for BP-15 and BP-1% spacecraft, and depicts the simi-
larity between BP-15 and BP-13 launch vehicle SPL. There is very little
difference between the two curves.

The aerodynamic noise measured on the BP-15 spacecraft was less
severe than the noise levels measured on BP-13. The SPL exceeded the
ambient instrumentation noisz at T+32.5 seconds (fig. 4.9-1) and con-
tinued to inerease to a 149 decibels peak at T+i3 seconds. The SPL
then decreased tc 140 db at T+47.5 seconds. An 18 db increase occurred
from T+47.5 to T+49.5 seconds; therefore, a one-third octave band
analysis was made at T+L9.5 and is presented in figure 4.9-4. This
rapid increase has been experienced during wind tunnel testing of the
Apollo vehicle (ref. 6) and has been related to local sonic flow con-
ditions at the vehicle shoulder.

During supersonic flow, the BP-15 spacecraft SPL remained at approx-
imately 150 db through the maximum dynamic pressure range. At T+100
seconds, the aerodynamic SPI, dropped to 14C db, which is considered in-
significant.

A rigorous explanation for the lower aerodynamic levels indicated
has not been resolved. The vehicle configurations were similar for
BP-15 and BP-1% spacecraft, but the trajectories produced a different
angle of attack and dynamic pressure time history. In addition, the
fluctuating pressures were relocated to aid in structural analysis.
Because of these differences, including the instrumentation lower limit
capabilities described above, additional investigation and study will
be required before a solution is obtained.

Fluctuating pressure 3 at XA 1000 and 3%29.25° and fluctuating
pressure at XA 973 and 277.5° were very active during transonic flight
and the high dynamic pressure range. See section L4.7.

In summary, the launch vehicle noise for BP-15 was similar to that
for BP-13 spacecraft. Both reached a maximum of 148 db. (See fig. 4.9-3.)
The aerodynamic noise measured on the BP-15 microphone reached a maxi-
mum of 158 ab (fig. 4.9-1) which is less severe than the BP-13 microphone

mezsurement which was 164 db at the same time in flight. This differ-
ence may be related to the different trajectories.
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4.10 Heat Protection

The heat protection on the BP~15 spacecraft consisted of epoxy-
impregnated cork covering the forward section of the command module and
the RCS housing and silica-filled Buna-N rubber covering the truss
members of the launch-escape subsystem.

The forward section of the boilerplate command module was covered
with varying thicknesses (fig. 4.10-1) of cork-based thermal insulation.
This was to prevent the aluminum skin of the command module from exceeding
the design temperature of 250° F during the powered flight phase of the

mission. No thermal insulation was required between XClIS ok and

XC135.72 because of the ablative qualities of the fiber-glass radome.

The aft heat-shield area was not exposed to the launch enviromment,
and thus no heat protection was required.

The command module (CM), service module (SM), insert and adapter
were not instrumented for skin temperatures.

Calorimeters mounted flush with the exterior wall of the CM and SM
were used to measure launch-heating rates. A description of the launch-
heating environment is covered in section 4.11, Aerothermodynamics.

The heat protection for the launch-escape tower consisted of PRuna-N
rubber (60 percent silica filled) covering the truss members. Several
plies of rubber were built up eccentric to the structural tube with the
maximum thickness in the region of highest heating. Truss members per-
pendicular to the flow were protected by a maximum thickness of
0.375 inch of rubber. Iegs and diagonal members were protected by a
maximum of 0.3 inch of rubber. Figure L4.10-2 shows the launch-escape
tower truss members and the location of the temperature sensors.

Sensors were mounted on the metal surfaces and covered with the Buna-N
insulation.

Figure 4.10-3 shows the measured temperatures at the interface of
the rubber and the metal surface (bond line) during powered flight.
The figure indicates that at the time of tower Jjettison the maximum
bond-line temperature on the diagonal member was 101° F. Both instru-
mented truss members which were perpendicular to the air flow indicated
a maximum temperature of 89° F. The bond-line temperatures of the mem-
bers parallel to the air flow did not exceed 90° F. The temperature of
the truss member nearest the LES motor nozzle did not exceed 90° F at
the time of tower jettison. Temperatures measured during Apollo mission
A-101 (BP-13 spacecraft) were within 10° F of the above temperatures.

SECNPIBEMTAL
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Aeordynamic heating produced a maximum truss-member bond-line
temperature which was less than 20 percent of the design limit (550° F).
The thickness of the ablative material necessary to withstand the design
limit temperature was calculated for the most severe thermal condition
that the lsunch escape subsys.em might experience. This design condition
would occur not only if the tower were exposed to aerodynamic heating
during the powered flight phase but also if it were enveloped by the
launch-escape rocket plume, with its heating and erosion, during an
abort. There was no abort during the A-102 mission, and at the time
the LES separated from the command module by the alternate mode of
tower jettison, the truss members had reached maximum temperatures appre-
ciably below the structural design limit.
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XC133’72 Fiber-glass radome

X0115.94———

0.16" thick cork
Forward

heat shield

X82.75

0.12" thick

k
Conical heat shield cor

XC24.12
\A(ftheat shield
XCO.OO :

XC-1.3

Figure 4.10-1. - Command module heat protection for
BP-15 spacecraft.
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Note:

Transducer numbers
refer to listing in
table 8.1-1

XL116.0
LAO60OT

X, 87.87

LAO6O1T

X, 59.75
LA0602T

LAO603T

LA0606T

LAO607T
LAO605T

X[ 34.12

LA0604T

X, 0

-
+27 +Y
_Y>©<_Z

Eight temperature sensors bonded to structure

Figure 4,10-2, - Launch-escape tower temperature
transducer locations on BP-15 spacecraft.
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411 Aerothermodynamics

In order to detine the launch heating environment, 20 asymptotic
calorimeters were installed on the spacecraft: 12 on the command module,
7 on the service module, and 1 on the adapter section (figs. %.11-1 and
4.11-2). Instrumentation locations were selected to determine heating
rates both in clean areas and in the vicinity of various surface irreg-

ularities. The maximum measured heating rates of 7.2 Btu/fte/sec on

ti.c command module and 0.9 Btu/fte/sec on the service module are similar
to those obtained on the BP-13 spacecraft (ref. 1) and are in agreement
~ith predicted values (ref. L). :

All calorimeters appeared to function normally through lift-off;
however, the calorimeter located on the service module behind the for-
ward RCS nozzle did not respond to the main heat pulse at T+60 seconds.
The calorimeter in the same position also failed during the flight of
the BP-13 spacecraft.

The flight enviromment for the BP-15 spacecraft is shown in fig-
ure 4.11-% and is very similar to that of the BP-13 spacecraft. The

Reynolds number based on the maximum body diameter exceeded 107 and had

decreased to 5 X 10u at staging. Hence, turbulent flow was expected
throughout that portion of the trajectory during which heating occurred.
A Mach number of 9.5 was reached at the time of staging. The peak
heeting rates were generally attained at a Mach number of 3.7 and a

Reynolds number of 4 X 106.

The angle of attack began a gradual increase at about T+80 seconds
and continued to increase throughout the heating period (fig. ho11-b).
A more severe increase occurred between T4+130 and T™135 seconds. Al-
though Q-ball data during this portion of the flight are not very
accurate, the data indicate the above trends. These trends in angle
of attack are also indicated by the calorimeter data.

Command module heating.~ The heating rate histories recorded by
the command module calorimeters are presented in figure 4.11-5 and are
grouped to show circumferential variations, variations along conical
elements, and the influence of various surface irregularities.

At all locations, the major heat pulse was experienced from T+60
to 145 seconds with peak values occurring between T+100 and T+112

seconds. Peak heating values varied from 7.2 Btu/ft2/sec at the loca-
tion of calorimeters 7 and 12 to 3.3 Btu/fte/sec at the location of

~SONPHDENTIAL =
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calorimeter 2, All calorimeters except those along the 180° conical
element (2, 4, and 11) experienced a second peak at approximately
T+135 seconds. The heating recorded by calorimeters 2, 4, and 11
dropped sharply as the heating at the locations of the other calori-
meters approached this second peak. At T+135 seconds the Mach number

was about 7 and the Reynolds number was about 2 X 105.

An examination of circumferential variations and variations along
conical elements indicates an angle-of-attack effect on local heating
which is consistent with the trends of the Q-ball data. This effect is
illustrated in figure 4.11-5(h) which shows the circumferential varia-
tion in heating at XCYM. Calorimeters 1 and 3 located on the windward

side received the highest heat load, while calorimeter 2 on the leeward
side received the lowest. This same effect can be seen on calorimeters
11 and 12 at X 27 (fig. 4.11-5(i)) and on calorimeters 4, 5, 6, and 9

at Xc5h (fig. 4.11-5(j)). The extended heating at calorimeter 5 after

T+100 seconds is attributed to the influence of the scimitar antenna.
The angle-of-attack increase began to influence heating at approximately
T+90 seconds. The second peak on the windward calorimeters and the cor-
responding rapid decrease on the leeward calorimeters (2, 4, and 11)
occurred at the same time (T+l§0 to T+135 seconds) as the rapid increase
in angle of attack (fig. 4.11-4%). In the period from T+90 to T+l23 sec-
onds, the location of the windward conical element varied between 360°
and 345°, and between 345° and 310° during the period from T+125 seconds
to T+135 seconds. This movement of the effective wind vector caused the
second peak at the location of calorimeter 3 to be higher than that at
the location of calorimeter 1.

The magnitude of the heating at these second peaks is consistent
with predictions based on wind-tunnel data for an angle of attack of

5° (ref. 5).

Calorimeters 3, 9, and 12 located downstream of the tower leg well
indicated no significant influence of this surface irregularity on
local heating (fig. 4.11-5(k)). No sharp dropoff in heating at the
location of calorimeter 3, similar to that experienced by the BP-13
spacecraft, was experienced during the flight of BP-15 spacecraft.
(See fig. 4.11-7(a).) It appears that at the location of calorimeter 3,
the flow was separated after approximately 95 seconds on the BP-13 space-
eraft, whereas it was attached throughout the heating period on the BP-15
spacecraft.

Calorimeters 2, 4, and 11 (fig. 4.11-5(1)) indicate no significant

effect of the hatch cover on local heating; however, examination of
this figure substantiates the conclusions concerning angle of attack,

~CONFIPERTIAL
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The calorimeter nearest the apex on the leeward side (calorimeter 2)
would be the first to respond to angle-of-attack effects as evidenced
by reduced heating. Tris effect can be noted during the gradual in-
crease in angle of attack from T+90 to T4+125 seconds, as well as
during the rapid increase shortly thereafter.

A comparison of the data obtained at calorimeters 5 and 10 on the
BP-13% and BP-15 spacecraft (figs. 4.11-6(b) and 4.11-6(c)) indicates
that the upstream influence of the scimitar antenna was greater during
the flight of the BP-15 spacecraft. The heating at location 10 is
approximately the same on both vehicles; however, the location of
calorimeter 5 experienced a lower heat pulse on the BP-13 spacecraft.
During the flight of the BP-15 spacecraft the heating at calorimeter 5
was approximately equal to that of the heating at calorimeter 10.

(See fig. 4.11-5(m).)

The heating in the vicinity of the strake stub is illustrated in
figure 4.11-5(n). As on the BP-13 spacecraft, calorimeter 8 registered
heating rates lower than did calorimeters 6 and 7, which were approxi-
mately equal. Further analysis is required to determine the reason
for this difference.

The heating caused by the LES motor during tower jettison is evident
at all locations at approximately T+160 seconds.

Service module and adapter heating.- The heating-rate histories for
the service module and adapter calorimeters, presented in figure L4.11-7,
were similar to those obtained on the BP-13 spacecraft. Figure 4.11-674d)
compares the heating in a "clean" area during the two flights. ’

A1l service module calorimeters recorded decrease in heating at
about T+135 seconds, again reflecting the effect of a sudden increase
in angle o7 attack.

As during the flight of the BP-13 spacecraft, calorimeter 13
located on the surface of the service module behind the forward RCS
nozzle did not respond to the main heat pulse at T+60 seconds. How-
ever, the calorimeter body-temperature history indicated that this
area experienced higher heating than any other region on the service
module, an observation which is consistent with predictions based on
wind-tunnel measurements (ref. 4).

With the exception of calorimeter 13, the service module calorime<er
body temperatures remained within 6 percent of each other. Body temper-
ature for calorimeter 13 was about 30 percent higher than the body tem-
perature for nearby calorimeters 18 and 20. The maximum heating rates

CONMDENFIR L~
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for calorimeters 18 and 20 were about 30 percent higher than the rates
for "clean" area calorimeters such as calorimeter 16. See figures 4.11-8,
and 4.11-7(a) to 4.11-7(a).

Summary.- The launch heating environment of the BP-15 spacecraft
was similar to that of the BP-13 spacecraft. Peak values at most lo-
cations were approximately equal; however, the influence of surface
irregularities as well as circumferential variations in heating were
somewhat different during the two missions. Heating rates on both the
command and service modules were within predicted values.

~ CONFIDENTIALT
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Figure 4.11-3,- Launch configuration environment in terms of Mach

number (M) and Reynolds number (ReD) for BP-15 spacecraft.
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Figure 4.11-5, - Continued,
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Figure 4,11-6.- Concluded.
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4.12 Equipment Cooling

Description.- The equipment cooling subsystem for the BP-15 space-
craft consisted of the equipment required to protect criticsl electrical
components from over-heating. Thermal control ot these components was
provided by cabin-air convective cooling and by coldplate conductive
cooling. There was no similarity between this subsystem and the en-
virommental control subsystem for the Apollo production spacecraft.

The equipment cooling subsystem was a passive, closed-loop heat-
transport system. The subsystem included five coldplates, a cabin-air
heat-exchanger and fan, a coolant storage tank, an accumulator, and a
coolant pump. The electronic equipment which was mounted on the cold-
plates consisted of three telemetry RF amplifier and transmitter pack-
ages and two radar beacon transponders., The coolant fluid was a mixture
of LO-percent water and 60-percent ethylene glycol (specification
MIL-E-9500). The water was distilled and deionized, and the mixture
contained no inhibitors. The water-glycol mixture was recirculated
through a 35-micron absolute filter located in the ground support equip-
ment. The subsystem schematic is shown in figure 4.12-1.

During the prelaunch activities, the equipment cooling subsystem
was serviced with, and subsequently cooled by, the ground support equir-
ment (GSE) model S14-052, water-glycol cooling unit. The GSE circulated
cold water-glycol through the spacecraft coolant storage tank and main-
tained the stored coolant temperature below 20° F. During this same
period, the onboard coolant pump circulated the cold water-glycol tfrom
the coolant storage tasnk through the coldplates and the cabin heat ex-
changer coils. The warmed coolant then returned to the pump and passed
through the thermal control valve (TCV). When the coolant temperature
at the pump outlet was less than 40° #5° F, the TCV routed the coolant
directly to the coldvplates. When the pump outlet coolant temperature
exceeded LO° #5° F, the TCV routed coolant fluid by way of the storage
tank to the coldplates. Thus, in effect, a volume of cold Tluid was
withdrawn from the storage tank to replace the volume of warm coolant.
The temperature of the recirculated coolant to the coldplates was main-
tained below 40° #5° F, by the use of the TCV, until the temperature ot
the coolant in the storage tank reached 45° F, at which time, the TCV
was maintained in the open position to allow all coolant to flow from
the pump through the tank and to the coldplates.

Cooling of the water-glycol by GSE ceased at T-18 seconds when
the spacecraft umbilical was disconnected. Monitoring of some of the
parameters which measured the subsystem performance was also discon-
tinued at this time. Table 4.12-I shows the parameters monitored before
and after imbilical disconnect.

UNCLASSIFIED
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The equipment cooling subsystem was designed to maintain the cabin-
air temperature below 100° F through launch and to maintain the commun-
ications equipment below 150° F for one orbital pass, provided the coolant
stored in the tank was below 20° F at umbilical disconnect. These cri-
teria included a 60-minute hold after umbilical disconnect.

After umovilical disconnect, the spacecraft system continued to
circulate the water-glycol. At a cabin pressure oT 5.45 +0.5 psia,
two baroswitches turned off the power to the single-phase inverter,
which powered the cabin fan. When the fan turned off, convective
cooling of the cabin ceased.

The configuration of the equipment cooling subsystem of the BP=-15
spacecraft was similar to that of BP-13 spacecraft. The only config-
uration change was that the BP-15 spacecraft cabin temperature probe
was relocated to sense the inlet gas-stream temperature in the cabin
heat exchanger rather than the ocutlet gas~stream temperature. The
probe was relocated to enatle the sensing of a more representative gas
temperature.

Several hardware changes were made to the system as a result of
the experience obtained from the BP-13 spacecraft ground and flight
tests and BP-15 spacecraft ground tests. The cabin heat-exchanger
bypass valve on BP-15 spacecraft was permanently positioned to bypass
50 percent of the coolant sround the heat-exchanger core. On the BP-13
spacecraft this valve opersted to deliver cold water-glycol to the heat
exchanger core when the cabin temperature was greater than 70° F.

Below a cabin-air temperature of 70° F, 50 percent of the water-glycol
was bypassed around the core. During the BP-13 spacecraft checkout, -
the cabin-air temperature taken at the heat-exchanger outlet, was

found to be 45° to 55° F. This temperature was Jjudged to be too cold
for sustained operation of the batteries. As a result, operation time
for the cabin fan and coolant pump was manually programed during the
BP-15 spacecraft launch countdown to maintain the cabin air temperature
at approximately T75° F and the coldplate-outlet temperature below

100° F (fig. 4.12-2).

The problems encountered during the BP-13 spacecraft checkout, and
the anomaly in the operation of the pump during the countdown and flight
led to several changes in the coolant pump for the BP-15 spacecraft.

The stainless-steel ball bearings were individually inspected and

selected for conformance to the ABEC type 7 bearing code to maintain

the impeller shaft alinement. The motor stator was sprayed with epoxy
resin and bsked under vacuum to prevent oxidation or corrosion of the
stator. In addition, the motor and pumps were assembled in a dry nitrogen
atmosphere, hermetically s=aled, and shipped and stored in a dry nitrogen-
filled sealed container to prevent oxidation (fig. 4.12-3).

UNCLASSIFIED®
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Performance.~ The equipment cooling subsystem was operated as
planngd during the launch countdown. The GSE circulated 16° F coolant
at a rate of 2.8 gallons per minute to the coolant storage tank. The
onboard coolant pump and cabin fan operated with no apparent malfuncticn.
The coolant pump-outlet pressure was 31 psig, indicating normal pump
operation. The low pump-outlet pressure and the high total current
measured during the BP-13 spacecraft countdown were not evident for the
BP-15 spacecraft. During the countdown for the BP-15 spacecraft, manusl
programing of the operation of the fan and pump was used to maintain tke
cabin~air and coldplate outlet temperatures within the range desired
(fig. 4.12-2). The values of the equipment-cooling subsystem parameters
taken immediately prior to umbilical disconnect are shown in table b4.12-II.

The telemetry data indicated that the cabin fan was turned off by
the barowsitches at T+334 seconds, as shown by the drop in the electrical
system total current from 42 to 35 amperes. The cabin pressure at this
time was 5.3 psia, which is within the specified range and in agreement
with prelaunch testing.

The cabin pressure rate of decay increased at T+161 seconds at the
time when the launch-escape subsystem (IES) explosive bolts were fired
(fig. 4.12-4).

The BP-15 spacecraft did not ineclude gas-pressure-relief or con-
trol valves, and during launch, pressure was relieved by leakage through
the pressure shell. Cabin leakage was to be equivalent to the flow

from a %— to %—inch diameter hole. See section 4.7 for additional

detail regarding this change in cabin pressure decay rate. There was
no structural configuration similarity between the boilerplate cabin
and the production spacecraft cabin pressure shell.

The telemetry data indicated that the coolant pump continued to
operate during the launch and orbital phases of the mission until power
depletion with no apparent malfunction. The electrical equipment
chassis temperatures ranged from 43° to 50° F at launch and from 50° to
55° F at the end of the first orbital pass.

The equipment cooling subsystem satisfactorily fulfilled the
function required of the subsystem during the mission.

UNCLASSIFIED
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TABRLE 4.12-I.- MONITORED EQUIPMENT COOLING SUBSYSTEM PARAMETERS

Ground support equipment

Telemetry

Cabin air temperature

Coldplate inlet coolant temperature
Coldplate outlet coolant temperature
Tank outlet coolant temperature

Tank inlet pressure

Pump outlet pressure

GSE (S14-052) delivery temperature

GSE (S1k-052) delivery rate

Cabin

Cabin

T™ RF

™ RF

™ RF

TM RF

T™ RF

™ RF

alr temperature

interior pressure
transmitter A temperature
transmitter B temperature
transmitter C temperature
amplifier A temperature
amplifier B temperature

amplifier C temperature
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TABLE k4,12-TI.- EQUIPMENT COOLING SUBSYSTEM PARAMETERS
AT UMBILICAL DISCONNECT (T-18 SEC)
Parameter Planned Measured

Cabin air temperature, °F . . . . . . . . . 55 to 100% 6L
Coldplate inlet coolant temperature, °F . . . ho x5 4o
Coldplate outlet coolant temperature, °F 45 to 50b 45
Tank outlet coolant temperature, °F , 70 (max) 30
Tank inlet pressure, psig . 20 20
Pump outlet pressure, psig 32 +£ 2 31
GSE (S14-052) delivery temperature, °F As required 16
GSE (S1k-052) delivery rate, gallons

permin . . . . . . . 0 e e e . As required 2.8

875° F, optimum

blOO° F, maximum
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5.0 SA-T LAUNCH-VEHICLE DESCRIPTION AND PERFORMANCE

5.1 Description

The Saturn I is a two-stage launch vehicle consisting of stages
S-I and S-IV, an instrument unit (IU), and various fairings and adapters.
The total vehicle length is approximately 190 feet, consisting of an
80.3-foot-long by 257-inch-diameter S-I stage, a 41-foot-long by 220-inch-
diameter S-IV stage, a 4.8-foot-long by 15k-inch-diameter instrument unit,
and a 64,1-foot-long by 154-inch-maximum-diameter boilerplate spacecraft
and launch escape subsystem (LES). Vehicle details and dimensions are
presented in figure 5.1-1.

The S-1I stage dry weight is 107,170 pounds with a propellant capac-
ity of 850,000 pounds (lox and RP-1). BEight H-1 engines mounted in two
clusters, four inboard and four outboard, produce a total sea-level
thrust of 1.5 million pounds.

The S-IV stage dry weight is 13,857 pounds with a propellant ca-
pacity of 100,335 pounds (LH. and lox). The six RL10A-3 engines of
the S-IV stage produce a combined thrust of 90,000 pounds.

The instrument unit contains most of the flight control equipment,
including the vehicle inertial guidance and control system and the air-
borne hardware of six tracking and four telemetry systems. The IU also
has an integral power supply and distribution system, cooling systems,
and a gaseous nitrogen supply system. The TU begins to function prior
to lift-off to command S5-I start sequencing and to maintain programing,
seguencing, and flight control through S-T and S-IV stage operation.

Vehicle telemetry systems are provided for each stage and the IU.
These systems include.six airborne systems and one digital data acquisi-

tion system for preflight checkout in the S-I stage, three systems in
the S-IV stage, and four systems in the IU.

5.2 Preliminary Flight Performance

After 11 seconds of vertical flight, the launch vehicle began to
roll to the proper flight azimuth of 105° east of north and completed
the maneuver at T+25.7 seconds. At T+12.6 seconds, the preprogramed
pitch-attitude profile was initiated and continued until T+136.3 sec-
onds, at which time an essentially constant pitch attitude was main-
tained until the initiation of active guidance at 17.3 seconds after
separation of the S-I and S-IV stages. The shutdown of the S5-I stage
occurred at T+147.4 seconds which was only 0.7 second later than nominal.
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The actual trajectory parameters as compared with nominal were at that
time about 122.C ft/sec (37.2 n/sec) high in space-fixed velocity,
1.19 nautical miles (2.2 km) high in altitude, and 0.55 nautical mile
(1.02 km) greater in range.

Separation of the S-I and S-IV stages occurred at T+148.2 seconds,
followed by ignition of the S-IV stage 1.7 seconds later. All ullage
rockets functioned as expected and were successfully Jjettisoned., Fol-
lowing the initiation of closed-loop guidance, the vehicle was steered
into a nearly nominal orbit after S-IV shutdown, which occurred about
2 seconds later than had been predicted.

The overall performance of both the S-I and S-IV propulsion systems
was highly satisfactory, with all engine parameters being near predicted
values. All four of the S-I retrorockets performed as expected. The
total S-IV burn time was 1.3 seconds longer than predicted, as compared
with the expected 20 dispersion of +11 seconds. The S5-IV common bulk-
head pressure was steady at approximately 0.8 psia with no indication of
leakage.

Stability of the ‘total vehicle during S-I stage flight was main-
tained through utilization of the ST-124 stabilized platform and
associated hardware. This was the first test of the ST-124 and con-
trol rate gyros in closed loop during this phase of flight. 1In addi-
tion, the ASC-15 guidance computer was used for the first time to gen-
erate the roll and pitch program for S-I stage flight. A preliminary
analysis of flight parameters indicated that all guidance and control
hardware functioned in a satisfactory manner. Lateral load torques
caused by wind were very small, and, consequently, the stabilizing tor-
ques from the gimballed engines were small (0.50° deflection or less).
The maximum wind component, which occurred in the yaw plane, was only
49,2 ft/sec (15 m/sec). Since the pitch program was designed for zero
winds, the angles of attack were very small (1° or less during meximum
dynamic pressure). A small aerodynamic roll moment (approximately 3° roll
attitude) was experienced during S-I stage flight which was similar to
what had occurred on earlier flights. Pitch and yaw disturbances during
separation were very small, but at the start of separation a disturbing
torque caused the roll rate to build up to a maximum of 2.3 deg/sec with
a corresponding roll attitude of 5° about 3 seconds after separation.
Upon S-IV ignition, the corrective action of the engine actuators caused
a maximum rate overshoot to 6 deg/sec with very adequate damping. The
roll rate observed would correspond to a 1.1° misalinement of one ullage
rocket.

At guidance activation, the S-IV vehicle attitude was changed from
67° to 75° nose down within 21 seconds in response to adaptive steering
commands. The lateral deviations accumulated during S-I burn required

TPCURPIERTIRE.
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maximum transients of 1.5° and 6° in the X and Y commanded angles,
respectively. Such transients are not considered severe.

A preliminary analysis of orbital insertion conditions (S-IV cut-
off plus 10 seconds) has indicated that the difference between the
guidance computer value of space-fixed velocity and the value obtained
from orbital tracking was 6.2 ft/sec (1.9 m/sec). The lateral velocity
difference obtained was 14.8 ft/sec (4.5 m/sec). Such comparisons are
preliminary, and the uncertainty in these values is from 3 to 6 ft/sec.

Very low bending moments (about one-fourth of the magnitude experi=-
enced during mission A-10l) were observed during the flight. The low
magnitude can be attributed to the low angles of attack experienced. No
significant disturbances were noted during launch-escape subsystem (LES)
Jjettison, but some first mode bending was observed after jettisoning.

Base thermal and pressure environments for the S-I stage were
similar to those experienced during mission A-101. Skin temperatures
of the S-IV and S-I stages indicated slightly higher values than had
occurred during mission A-10l. These higher values were probably due
to the faster trajectory flown on mission A-102.

Overall performance of the launch~vehicle telemetry instrumentation
system was good with only 8 of 1,235 measurements having failed completely.

A complete detailed evaluation of the performance of the launch
vehicle is given in reference 7.
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6.0 CCNCLUDING REMARKS

All of the spacecraft test objectives for the Apollo mission A-102
were fulfilled.

The compatability of the spacecraft with the launch vehicle was
further confirmed under launch and exit condition.

Satisfactory engineering data, covering designated parameters of
spacecraft environment for a Saturn V type launch trajectory, were ob-
tained for use in verifying launch and exit design criteria.

The launch-escape motor together with the pitch-control motor pro-
pelled the launch-escape subsystem safely out of the path of the space-
craft in a demonstration of the alternate mode of launch-escape tower
jettison.

Flight data from the instrumented simulated RCS gquad assembly dif-
fered from the values assumed for design criteria for the RCS. Addi-
tional investigation and analysis will be necessary to complete the
flight data and design criteria.

Flight-data on spacecraft launch environment near the RCS quad A
was insufficient for verifying criteria. Additional investigation and
analysis will be required.

The flight trajectory of the mission provided the launch environ-
ment planned for the mission.

Al]l spacecraft subsystems performed the functions required for a
satisfactory mission.
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7.0 APPENDIX A

7.1 Prelaunch Operations

Initial checkout of the BP-15 spacecraft was accomplished in the
Apollo test and operations (ATO) area at the contractor's facility at
Downey, California. Final checkout terminated at Cape Kennedy, Florida,
with the launch operation.

The major tests and operations performed on the spacecraft, or in
conjunction with spacecraft operations, were conducted in accordance
with the detailed Operational Test Procedures (OTP). (See appendix B,
section 8.2.) These procedures define the step-by-step test operations
to be performed and the response or values required for approval, where
applicable., The OTP's were used throughout the checkout operations at
Downey, Californis, (ATO) and at Hangar AF and Launch Complex 37B fa-
cilities at Cape Kennedy, Florida. (See section 8.2.)

On March 6, 1964, the command module, service module, insert,
adapter, and launch-escape tower were transferred to ATO from the
manufacturing facilities. The schedule of milestone events for the
BP-15 spacecraft during the ATO period is given in figure 7.1l-1.

The schedule of ground support equipment (GSE) modifications and
validation at Downey, California, is indicated in figure 7.1-1. BP-13
spacecraft GSE electronics equipment was used at Cape Kennedy rather
than shipping additional GSE electronics from Downey.

Individual subsystems tests were performed from April 29, 196k,
to May 11, 1964. Subsystems were programed for individual checkout
during this period in coordination with modification work on the ve-
hicle and associated GSE. BP-15 spacecraft subsystems tests differed
from those of BP-13 spacecraft in that no special measuring devices
(sMD) or special adaptive devices (SAD) were used during this phase of
the BP-15 spacecraft operations. '

Stacking, alinement, and hookup took place between May 11, 196k,
and May 18, 1964. The spacecraft assemblies were mated and alined in
the Navajo tower and all GSE was connected in preparation for the inte-
grated subsystems test. Prior to the start of this phase of operations,
the mass characteristics were determined for each spacecraft module. A
complete quality control inspection by the spacecraft contractor's and
NASA personrnel was also accomplished.

The integrated subsystems test was started on May 19, 1964, and
was completed with the exception of the last 10 steps (electromagnetic

“UNCLASSIFIED .- -
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interference (EMI) tests) of the procedure. The spacecraft equipment
was operating normally, but the pyro-substitute unit haed grounding
problems similar to those encountered during BP-13 spacecraft checkout
at Cape Kennedy. The integrated subsystems test was continued on

May 25, 1964, utilizing fused, l-ohm resistor circuits to measure firing
and/or transient signals. CEC recorders were used to read the firing
indications. The identical technique was utilized previously at Cape
Kennedy with the BP-13% spacecraft. The EMI portion of the integrated
subsystem test was then completed.

Spacecraft removal from the Navajo tower was performed following
debriefing and acceptance of the integrated subsystems test. The ser-
vice module, insert, adapter, and assorted GSE were shipped on June 3,
1964, by the B-377 PG aircraft. The command module and launch-escape
tower were shipped on June 19, 1964. The B-377 PG was also utilized
for this shipment, because of the non-availability of an Air Force C-133B.
The spacecraft and associated GSE were transported to Cape Kennedy with-
out damage to the equipment.

. The BP-15 spacecraft operations at Cape Kennedy, Florida, began
with the receiving inspection of the GSE and spacecraft assemblies in
Hangar AF. Prior to arrival of the spacecraft, the decision was made
that no hangar testing would be performed. This alleviated the need
for removal and return of the BP-13 spacecraft GSE from Complex 37B.
Figure 7.1-2 presents the scheduled milestones for the BP-15 spacecraft
prelaunch operations.

The command and service modules were mated in Hangar AF on June 22,
1964, TFinal installation of the adapter air-conditioning barrier was
completed, and the command and service module assembly was mated to the
adapter. (See figure 7.1-3.) The entire stack was then single-point
weighed and loaded on the vertical transport. The spacecraft was then
transported (in the stacked configuration) to Complex 37B for mating
with the launch vehicle (SA-7) on June 26, 1964. Figure T.1l-4 shows
the spacecraft being hoisted.

The instrumented RCS quad assembly was received from Downey,
California, and it was installed and checked out immediately following
the mating of the spacecraft with the launch vehicle. This task was
completed on June 29, 196k,

BP-15 spacecraft prelaunch operations were extended approximately
2 weeks because of a stress-corrosion problem in the 1liquid oxygen dome
of the S-I engines. The eight engines were removed, reworked by the
contractor, static fired, and reinstalled in the S5-I stage. During this
time, a special test was performed at the request of MIT, for the
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purpose of gathering data which could be used to verify current design
criteria for GSE used in the alinement of the stable platform of the
guidance and navigation subsystem while the spacecraft was on the pad.

Upon arrival, the launch-escape tower was transported to the Merritt
Island launch area (MILA) where the assembly of the launch-escape sub-
system (LES) was completed in the ordnance storage building. All LES
motors arrived at Cape Kennedy prior to receipt of the launch-escape
tower. A launch-escape motor grain inspection using & boroscope was
also performed at MILA. Upon completion of the LES assembly, the LES
was weighed and balanced, and the assembly was transported to the GE~
Mark VI storage building on Cape Kennedy, where it remained until it
was mated to the command module at Complex 37B on August 16, 196k.

Figure 7.1-5> shows the LES being lifted for mating.

~The spacecraft-launch vehicle integrated tests began with the
electrical mating and interface checks on August 7, 1964, and they were
successfully completed on September 15, 1964, with the countdown demon-
stration test. Testing consisted of overall test 1 (plugs in), overall
test 2 (plugs out and live ordnance in), the RFI test, and the simulated
flight test.

Following completion or the simulated flight test, while removing
test hardware, a broken tower separation bolt was discovered in the LES.
The LES was demated from the spacecraft, and all tower bolts were re-
placed with the improved bolts which had precision-rolled threads to
minimize stress concentration. The resultant electrical disconnection
was of particular concern since 1t invalidated the simulated flight test,
which 1s the final spacecraft readiness test prior to launch. The LES
was remated to the spacecratft on September L4, 106L, and all electrical
connections were reverified by initiating a tower jettison signal from
the launch vehicle instead of rerunning the simulated flight test.

One of the major differences in the BP-15 spacecraft prelaunch op-
erations from those of BP-13 spacecraft was the countdown demonstration
test. This test was programed into the SA-7 schedule by John F. Kennedy
Space Center (KSC) for the purpose of increasing the proficiency of the
launch personnel and to insure an on-time launch.

The BP-15 spacecraft prelaunch operations were completely suspended
for a total of 3 days because of severe weather conditions caused by
hurricanes Cleo and Dora. The space vehicle remained on the launch pad
within the service structure with clam-shell doors closed during the
hurricane periods, and no damage was sustained.

A flight-readiness review, conducted on September 11, 196&, estab-
lished that the BP-15 spacecraft was acceptable for launch.

EOERAALLLA L
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The overall BP-15 spacecraft prelaunch operation, both at Downey
and Cape Kennedy. progressed smoothly. It was evident throughout the
operation that experience gained during the prelaunch operations of
the BP-13 spacecraft was being utilized and the methods were being
improved.
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Figure 7.1-3.~ BP-15 spacecraft CM-SM being stacked on adapter section
in Hanger AF, Cape Kennedy, Florida,
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Figure 7,1-4.- BP-15 gpacecraft being lifted to mate with the SA-7 launch vehicle at
Launch Complex 37B, Cape Kennedy, Florida.
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Figure 7.1-5,~ LES being lifted for mating to the spacecraft at Launch Complex 37B,
Cape Kennedy, Florida,
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7.2 ILaunch Operations

The T-1 day countdown began at T7:30 a.m. e.s.t. on September 17,
1964, at T-875 minutes. The spacecraft portion of the countdown, how-
ever, did not begin until 9:40 a.m. e.s.t. and consisted of tower-bolt
ordnance electrical connection closeout and electrical verification.

The usual T-1 day activities performed on the BP-15 spacecraft were
conducted on T-1 day of the countdown demonstration test on September 1k,
1964, thus eliminating the need to repeat these tasks.

The final countdown began at 11:25 a.m. e.s.t. on September 17,
196k, at T-545 minutes, with a planned T-O time of 10:00 a.m. e.s.t.
Figure T7.2-1 shows the schedule of actual and planned time for the tasks
performed during the launch count. The spacecraft testing proceeded
normally without any holds or equipment malfunctions. Only two events
of major significance occurred during the count: one was the difficulty
encountered by the Range and Hangar S ground station in distinguishing
the C-band beacons responses because of multipath interference from the
Patrick Air Force Base radar, and the other was an inadvertent actuation
at T-360 minutes of the service structure adjustable 4-level Firex system
during removal of an air conditioning duct. Approximately 50 percent of
the service module exterior was wetted.

The count was continued until T-245 minutes when a hold was called
because of the wet umbilicals. The water had entered one S5-IV umbilical
connector which, in turn, produced erroneous indications of S-IV engine
exciter firing. Power was removed from the S5-IV stage, and the moisture
was dried from the connector. The count was resumed €9 minutes later,

The count continued until T-30 minutes when a scheduled hold began.
During this scheduled 21-minute hold, the S-IV liquid oxygen (lox) pre-
pressurizing regulator indicated a malfunction. Analysis of the problem
indicated that the regulator was operating satisfactorily; however, the
hold had been extended 4 minutes longer than scheduled. The count pro-
gressed to T-12 minutes when it was again interrupted because of a mal-
functioning S~I hydraulic-pump temperature interlock, which prevented the
S-I hydraulic pumps from being started. Since measurements indicated
normel temperatures, the interlock was jumpered out in the blockhouse
distributor. The total hold time was 20 minutes.

The count was resumed at T-12 minutes and progressed to T-5 minutes
when a Range safety hold was called because of intermittent operation of
the Grand Turk Island radar. Because of S-IV lox bubbling and spacecraft
battery lifetime constraints, the count was recycled to T-13 minutes, and
the spacecraft was transferred to external power. During the hold, diffi-
culty was encountered with the swing arm hydraulic test. This problem
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was corrected by a jumper in a blockhouse distributor without adding tc
the Range hold. After 50 minutes, the radar problem was corrected, and

the count resumed and was continuous through lift-off which occurred at
11:22:43 a.m. e.s.t. on September 18, 196h.
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(a) T -1day, Septemher 17, 1964,

Figure 7.2-1.- Apollo mission A-102 countdown activities,
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7.3 Range Operations

The Network which provided telemetry and radar support for the mis-
sion consisted primarily of stations of the Eastern Test Range augmented
by Department of Defense and NASA stations. The coverage provided by
the stations is shown in table 7.3%~I for telemetry, and table 7.3-I1II
for C-band radar.

One day prior to launch, the Antigua Island radar site was shut down
because of a hydraulics system malfunction. The malfunction was cor-
rected in time to support the second orbital pass. Grand Turk Island
supported the launch phase in lieu of Antigua. During the countdown,
the Grand Turk Island radar had a relay failure which shut down tne
transmitter and resulted in a hold at T=3 minutes and a recycle to
T-13 minutes after the relay was replaced. On the basis of the network
checkout tests, the Pretoria, South Africa, telemetry station was not
operational at launch. The first valid orbital determination by GSFC
computers was made on the basis of data from Carnarvon, Australia, on
the first orbital pass.

During tne mission, telemetry coverage was obtained on the first
four orbital passes and part of the fitth, Radar transponder tracking
was obtained during the first two orbital passes and part of the third.
After the transponders stopped operating, many of the network stations
skin-tracked the vehicle on a programed schedule throughout its life-
time of 59 orbital passes., The vehicle reentered over the South Indian
Ocean.

The times of acquisition and loss of telemetry reception for each
station are given in table 7.3-I. In general, each station reported
horizon~to~horizon reception on all tnree spacecraft links. The last
station to report reception of link C was Pretoria during the fourth
orbital pass. The last station to report reception of link B was Hawaii
in the fourth orbital pass. The last station to report receiption of
link A was Hawaii in the fifth orbital pass. ILink A was last received
at 07:38:52 g.e.t.

The times of acquisition and loss of C-band radar reception are
presented in table 7.3-II. The last station to report tracking of the
C-band transponders was Hawaii during the third orbital pass at
Ok:31:11 g.e.t.

The following anomalies were noted in the performance of the
network:

(1) Several of the tracking stations experienced difficulty in
lock-on to the spacecraft transponder due to the IU transponder oper-
ating longer than anticipated. Several sites seemed confused as to
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which signal to track, but since the second return (spacecraft trans-
ponders) was the stronger signal, it was tracked instead of the IU
transponder. See section 9.1.

(2) FEglin Air Force Base, Florida, on the first orbital pass, was
requested to skin track rather than interrogate the beacon which was
still active. Skin track was not obtained because of the extreme range.

(3) White Sands Missile Range, New Mexico, telemetry station, on
the first orbital pass, reported heavy multipath interference on link A
(the acquisition link) between 0° and 25° elevation. The signal strength
varied also, possibly from spacecraft tumbling. Idink & had a fairly
constant signal strength during the second orbital pass.

(4) Pretoria telemetry station reported dropouts of 4 seconds and
13 seconds duration on the third orbital pass and late acquisition and
a 15-second dropout of link C on the fourth orbital pass. Links A and
B were satisfactory.

(5) Pretoria telemetry station, on the first orbital pass, was
unable to hold automatic track telemetry due to undetermined equipment
problems. In switching to manual track, no dropouts in reception were
experienced; however, high noise was observed in some periods of the
track.

(6) Grand Turk Island radar station lost contact with the vehicle
from 00:06:43 to 00:07:55 g.e.t. because of Bermuda interference on
beacon reception.
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TABLT 7.5-1T.~ C-BAND RADAR COVERAGE

E\ll times are ground elapsed time]

| Leunch phase and first pass Serond pass Third pass
Station Duration of signal, hy:min:sec |Duration of signal, hr:mim:sec |Duration of signael, hrimin:sec
Acquisition l Toss fcquisition 'I Toss Acguisition I 1065
Eastern Test Range
Cape Kennedy 00z 00; 00 00: 09: 16
Patrick Air Force Basc, 00:00: 16 00: 07: 45 01:36:15 01:41:L5
Fla.

Grand Bahame Islend 00:01: 14 00: 09: 38

San Salvador Island 00:02: 25 00:10:53

Grand Turk Island a00:03:0) a00:11:‘,';5 01:38:38 0l:4k: 01

Antigua Island 01:45:58 01:47:08

Ascension Island 00:21:10 00:27: 32 01:55:13 02:01: 00

Pretoria, South Afriea 00:32:2% 00:39: 47 02:06: 01 02:13:10

Manned Space Flight Network
Bermuda 00:06: 28 00:11:43
Carnarven, Australia 00: 54119 00: 59: 46
Department of Defense Range Stations

Hawaii 01:17:29 01:21:29 02:53: 57 02:56:29 ok:25:23 Oh:31:11
California 01:26:33 01:%3:27

Wh]i‘teMSands Missile Rangej 01:31:35 01:36:23 03:05: 2% 03:08:35

. lex.

8Grand Turk Island lost contact from 00:06:43 tq 00:07:%5
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7.4 Data Coverage and Availability

Data support, general.- All data requested by the Apollo Spacecraft
Program Office, Test Evaluation Branch, MSC-Houston, for the evaluation
of launch vehicle and spacecraft performance are listed in table 7.L4-I.

Responsibility for acquisition and delivery of these data was
divided between the Kennedy Space Center (KSC) and the Goddard Space
Flight Center, Florida Operations (GSFC-FO). KSC provided launch-phase
data and GSFC-FO provided insertion-phase (Antigua) and orbital-phase
data. Both Centers delivered all data to the Data Ssction, Operations
Support Branch, MSC-Florida Operations (OSB) for handling and distri-
bution.

Telemetry oscillograph recordings were annotated at OSB prior to
distribution to the launch site analysis and reporting team. Real-time
telemetry oscillograph recordings were made available to the team within
hours after lift-off.

Iaunch data support.- Delivery of quick-look data required by the
analysis and reporting team was satisfactory. Magnetic tapes from
Telemetry Building 2 (Tel 2), Telemetry Building 3 (Tel 3), Mission
Control Center (MCC), and Hangar S were all received within a time
envelope of 1 to 4 hours (table 7.4-I). Real-time oscillograph records
from Tel 2 were received within 1 hour after lift-off. Quick-look
processed data plots (SC-4020 plots) of commutated and continuous
channels were received 24 hours after lift-off. Telemetry signal
strength records were received between 5 and 6 calendar days after
lift-off. Delivery of engineering sequential film is late at this
writing and thus precludes a complete evaluation of photographic coverage
at this time.

Insertion and orbital data support.- A 2h-hour delay was experienced
in obtaining insertion phase telemetry tapes from Antigua. The delay
was attributed to breakdown of the Air Force aircraft scheduled to trans-
port- data from Antigua to Patrick Air Force Base. The majority of
orbital tapes provided by GSFC-FO were generally provided within the
time frames specified.

Orbital phase tapes from Hawaii, Bermuda, Corpus Christi, and
Eglin were received at GSFC, Greenbelt, Maryland. Copies were forwarded
directly to MSC~Houston and arrived at T+1l4 calendar days. At the
present time, the tape from Pretoria has not arrived at GSFC. The de-
lay was caused by breakdown of successive Air Force aircraft enroute
from Pretoria to Washington, D. C.
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Photographic coverage.- Photographic coverage, including the
guantity of instrumentation committed and data obtained during the
launch-phase, is shown in table 7.4-I. The total requirements for
engineering sequential camsra coverage and usage are shown in
table 7.4-II. Tocations of the engineering sequential cameras are
shown in figures 7.4-1 and 7.k-2.

An evaluation of all films received indicates that, of the six
tracking camera films available for review, the quality was generally
good with respect to exposure, focus, and tracking, except for one film.
Film quality with respect to other camera and film defects was good with
the following exceptions: One film appeared very grainy, and two films
provided no usable timing image. Five of the films were from the long
focal-length tracking cameras and provided very good coverage from
approximately 20 seconds after 1lift-off to approximately 32 seconds
after LES jettison (T4+160.2 sec). The Patrick IGOR camera tracked the
entire space vehicle to staging and then followed the S-1I stage.

Cocoa Beach and Melbourne Beach ROTI cameras tracked the entire space
vehicle through S-I staging and then the S-IV stage and the BP-15
spacecraft through LES jettison. The Vero Beach ROTI tracking camera
lost track of the spacecraft at LES jettison but did provide good
coverage of the spacecraft prior to and following tower separation.
The Cocoa Beach, Melbourne Beach, and Vero Beach films did provide
sufficient data to determine tumbling rates and approximate trajectory
of the jettisoned LES. The Grand Bahama Island IGOR camera provided
no usable data on this mission.

The other film available for review provided a close-up view of
the spacecraft at lift-off and for approximately 35 seconds of early
flight.

M3C-Houston data reduction.- Spacecraft telemetry data were pro-
cessed at MSC-Houston by the Computation and Analaysis Division (CAD),
with support from Instrumentation and Electrical Systems Division (IESD).
The tape copy used for launch-phase data reduction (T-10 sec to approx-
imately T4400 sez) was from the Mission Control Center (MCC) telemetry
station, Cape Kennedy, Fla., and was received in Houston at T+23 hours.
The tape copy used for reduction of insertion-phase data (T4400 sec
through insertion) was from Antigua Island telemetry station and was re-
ceived in Houston at approximately T4+72 hours. The first package of
engineering analysis plots from these data tapes was provided to the
evaluation team at T+6 calendar days. The package contained time-
history plots and tabulations of accelerations, strain gages, electrical
functions, temperatures, heat flux, conical surface pressure coefficients,
root-mean~-square (RMS) plots of low-frequency accelerations, fluctuating
pressures, and radial vibrations. Conical surface pressure coefficients
were determined by using the measured conical surface pressures and the

UNCLASSIFIED




UNCLASSIFIED 7-21

dynamic pressure based on the measured atmospheric density at the time
of launch. A second package of engineering analysis plots was made
available within ™9 calendar days and contained one-third octave-band
time histories; power spectral densities (PSD); and one-third octave~
band spectral analyses of fluctuating pressures, radial vibrations,
strain gages, and accelerations.

The RMS, PSD, and one-third octave-band analysis plots were pro-
duced using the MCC tape. Reduction of vibration data was accomplished
by both analog and digital methods. The PSD plots were produced on the
digital computer and both RMS, and one-third octave-band analysis plots
were produced using analog equipment.

Lift-off (T-0) was established as 11:22:43.26 a.m. e.s.t. as estab-
lished by launch vehicle umbilical disconnect (17:22:43.26 G.m.t.).
Event times were presented on the plots. The event times indicated were
the best information available at the time of preparation of the plots.
Prelaunch R and Z (Range and Zero) calibration values, which were re~
corded for the continuous and high-level commutator parameters, were
within 2 percent of the original values. No corrections were made as a
result of R and Z calibration changes because the change to the data
would not have been significant. The R and Z calibrations recorded for
the low-level commutator were not precise measurements; consequently,
they could not be used for data reduction.

The number and type of parameters processed for BP-15 gpacecraft
are compared with parameters processed for BP-13 spacecraft in
table 7.4-III.

A1l processed pressure measurments were biased to read ambient
pressure at launch. The accelerations were biased to read lg on the

X-axis and zero-g on the Y~ and Z-axes.

The data were processed and presented in accordance with require-
ments established jointly by the Apollo Spacecraft Program Office and
the analysis and reporting team subsystem analysts prior to the flight.

Acceleration and strain-gage time-history data were processed and
presented in two different formats. An edit routine to determine
changes of 3 percent, or greater, of telemetry full scale was superimposed
on a basic sample rate of one point every 0.1 second. A second method

utilized the same edit routine after a 2l-point running averagel had
been performed.

Data recorded by the high-level commutators, except for RCS param-
eters, were processed using an edit routine to determine transients
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greater than 2 percent. The data produced from the transient detection

. . . . 1
routine were superimposed on a basic sampling rate of one every > second.

These data were plotted and printed.

The RCS temperatures were processed with a S5-point running average1
and every point plotted. Every commutated data point was tabulated
without performing a running average.

Every data point recorded by the low-level commutator was processed,
plotted, and printed. A 5-point running average was performed on the
calorimeter and body temperature data, but no edit routine was performed.

An approximate 3-second drop-cut in the data occurred on all re-
ceiving station tapes just prior to and during launch-vehicle staging
because of flame attenuation from the S~I stage retrorockets. The same
drop-out occurred on the BP-13 spacecraft flight.

MSC-Houston data processing anomalies. -

a. The MCC tape, used for primary data reduction at Houston, did
not carry the 5-step VCO calibration required for data processing at
Houston. As a result, it was necessary to utilize the ground station
bani-edge calibrations recorded on the MCC tape. The adequacy of this
nrocedure was verified by comparing R and Z calibrations recorded on the
Hangar S tape with R and Z calibration information recorded on the MCC
tape. The values of these R and Z calibration data were well within
system accuracies, and no bilas was present.

b. The Hangar S tape was not used for data reduction at Houston
because the time information recorded on the tape was direct-recorded
as part of a composite. This procedure rendered the extraction of time
information recorded on the tape incompatible with existing ground-
station equipment since this equipment requires that time information
be recorded separately as a frequency modulated subcarrier.

c. The tape from Tel 2 was not used because the tape contained
a dropout of approximately 5 to 8 seconds at approximately T+130 seconds
which was not apparent in any of the other telemetry tapes.

lA running average 1S accomplished by averaging 21 consecutive
points and printing this value versus the time corresponding to the
middle or eleventh point. The number one data point is dropped, a
new or 22nd included, and a new average is produced and printed out
versus the new midpoint. This is continued until all the data points
have been included in an average.
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d. The 100-kc reference frequency on the tape copy from Tel 3 used
at Houston was approximately 1.7 ke high.

Marshall Space Flight Center data.- Three spacecraft measurements
were transmitted through the launch-vehicle telemetry system on a sing’e
side-band link. Data from the three measurements were processed at
Marshall Space Flight Center (MSFC) and forwarded to MSC-Houston. The
measurements are the following:

Taunch=~
Iaunch- vehicle
Spacecraft vehicle telemetry
measurement measurement channel
Adapter radial vibration no. 5 AA0089D E373-900 S3-1%~E01
Adapter radial vibration no. 6 AAO09OD E374-900 S3-14
Service module acoustic SA2T760Y 169-~-900 S3=-12

Iaunch-vehicle data essential to the analysis of spacecraft per~
formance were processed at MSFC and forwarded to MSC-Houston. ILaunch-
vehicle parameters processed for MSC-Houston are listed in tables T7.4-I
and 7.4-V. '

A1l MSFC processed data were furnished in formats and engineering
units compatible to MSC analyses.
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TABLE 7.4-I,~ DATA AVAILABILITY

Data type Presentation Requested delivery | Date/time received
(2) (a)
Telemetry data from magnetic tapes
Telemetry Bullding 2 -;--in. magnetic tape T+4 H T+ H
Telemetry Building 3 %-m. magnetic tape T+h H T+9 H
Mission Control Center %-in. magnetic tape T+4 H ™3 H
Hangar S %-in. magnetic tape T+1 H T+8 H
Hangar D %—in. megnetic tape ™2 CD Did not acquire
Grand Bahama Island %-in. megnetic tape T+2 CD T+ CD
Antigua %-in. magnetic tape T+12 H T+2 CD
Ascension -;—-in. magnetic tape T+2 CD T+4 CD
Fglin %—in. magnetic tape T+2 CD T+ CD
Pretoria %nin. magnetic tape T+2 CD (v)
San Salvador %-m. megnetic tape T+2 CD T+1 CD
Hawaii 1-in, magnetic tape T+2 CD T+1k CD
Bermuda 1-in. magnetic tape T+2 CD T+1k4 CD
California 1-in, magnetic tape T+2 CD T+14 CD
Guaymas l-in. magnetic tape T+2 CD T+14 CD
Postlaunch instrumentation
message Report (TWX) T+1 CD T+1 CD

Data on telemetry receiving stetion performance

Signal strength RECO roll T+2 CD T+(5 to 6)CD
Telemetry data sheets
(station logs) Sheet T+2 CD T+5 CD (partial)

Data from oscillograph

Telemetry Building 2 Real-time oscillo- T+1 H T+1 H
graph roll
Telemetry Building 3 Playback copy ™8 H T+18 H
aLl(ey:
CD - Calendar Day WD - Working Day H - Hours

bmta requested but not received during the postlaunch reporting period.
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TABLE 7,4-I,- DATA AVAILABILITY - Continued

o

(o4

Presentation

Requested delivery

Date/time received

Data t
ee (a) (a)
Hangar S Real-time oscillo- T+2 H T+3 H
graph
Hangar D Special reale-time T+12 H T™+3 CD
oscillograph
Reduced telemetry data
Commutated channels SC 4020 plotsefilm T+ H T+1 CD
Commutated channels SC 4020 plots - T+ H T™+1 CD
roll copy
Commutated channels SC 4020 plots - book T+10 H T+1 CD
Continuous channels SC 4020 plots - £ilm T+2 CD T™+1 CD
Continuous channels SC 4020 plots - book T+2 CD T+1.5 CD
Iaunch-vehicle data
All launch vehicle
measurements SC 4020 plote - book ™2 CD T+1 CD
A1l launch vehicle Calibration curves - T=0 T-3 CD
measurements books
SA-T measurement program Book T-14 CD T-14 CD
SA-T7 ground and environ-
mental measurement program | Book T-14 CD T-14 CD
Flash reports from ground |Page As available (not (v)
and environmental measure- to exceed T+4 CD)
ment program
Antigua SC 4020 plots - book T+3 CD T+3 CD
Antigua SC 4020 plots - book T+ CD T+ CD
Ground and environmental
measurements SC 4020 plots T+4 CD ™3 CD
a
Key:
CD - Calendar Day WD - Working Day H - Hours

bmta requested dbut not received during the postlaunch reporting period.
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TABLE 7.4-I,- DATA AVATIABILITY - Continued

Data type

Presentation

Requested delivery

(a)

Date/time received

(a)

Radar and metric data

Quick-look IP transforma-
tion (positive velocity
acceleration)

Quick~look IP transforma-
tion (positive velocity
acceleration)

Quick-look IP transforma-
tion (positive velocity
acceleration)

Quick~look Ip transforma-
tion (positive velocity
acceleration)

Best estimate of
trajectory

Aerodymamic parameters -
containing dynamic pres-
sure, Mach number,
Reynold's number/foot

Aerodynamic parameters
containing dynamic

pressure, Mach number,
Reynold's number/foot

Final attitude data
(yaw, pitch, roll)

Final reduced flight test
data (coordinate system 1)

Final reduced flight test
data (coordinate system 1)

Final reduced flight test
data (coordinate system 2)

Final redquced flight test
data (coordinate systew 2)

Final reduced flight test
data (coordinate system 3)

Magnetic tape

I printout

Megnetic tape

IEM printout

IRM printout

I printout

Magnetic tape

IEM printout

Magnetic tape

IEM printout

Magnetic tape

IBM printout

Magnetic tape

T+6 H

T+3 CD

T+3 CD

T+3 CD

T+3 CD

T+3 CD

T+3 CD

T+3 WD

T+3 CD

T+3 WD

T+3 CD

T+3 WD

T+l CD

T+l CD

T+1 CD

T+1 CD

(v)

(v)

(®)

T+6 CD

T+7 CD

T+4 €D

(v)

(v)

T+12 CD

aKvey:
CD -~ Calendar Dmy

b

WD - Working Day

Data requested but not received during the postlaunch reporting period.
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TABLE 7.4-I,- DATA AVAILABILITY - Continued

=27

Requested delivery

Date/time received

Data type Presentation (a) (a)

Final reduced flight test
data (coordinate system 3)| IBM printout T™+3 CD T+6 CD
Final reduced flight test
data (coordinate system 4) | Magnetic tape T+3 WD (v)
Final reduced flight test
data (coordinate system 4)| IBM printout T+3 CD (v)
Position, velocity and
special trajectory para-
meters {orbital) IBM printout T+15 CD (v)
Pogition, velocity and
special trajectory para-
meters (orbital) Megnetic tape T+15 CD (v)
Preliminary estimate of
data coverage Sheet ™2 H T+ H
Plotting board charts
(stations 1 and LCC 37) Sheet T+l H T+2.5 H
Plotting board charts
(dovnrange stations) Sheet T+2 CD T+T CD
Orbital flight parameters | TTY message T+4 H ™3 H
Radar beacon log (uprange
ETR eites) Sheet (log format) T+1 CD T+4.5 H
Radar beacon log
(downrange ) Sheet (log format) T+4 OD T™+5 CD
Radar event record
(uprange) Strip chart T+l CD T+3 CD
Radar event record (DOD’
sites) Strip chart T+ CD (v)
Radar event record
(NASA sites) Strip chart T+ CD (v)
Radar function record
(includes signal strength
ETR sites) Strip chart T+1 CD T+6 CD
aKf.ey:

CD ~ Calendar Day WD - Working Day H - Hours

bmta requested but not received during the postlaunch reporting period.
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TABLE 7.4-I,- DATA AVATLABILITY - Continued

Requested | Date/time
Data type Presentation delivery |{ received
(a) (a)
Radar function record (includes signal
strength DOD sites) Strip chart T+6 CD (v)
Radar operations log (data sheet - ETR) |Sheets T+1 CD T+11 CD
Radar operations log (date sheet - DOD) |Sheets T+6 CD (v)
Radar operations log (data sheet - NASA) i Sheets T+6 CD (v)
Final special trajectory parameters
(inertial-flight path, heading, geo-
centric lat., ete.) IBM printout T+3 CD (v)
Final special trajectory parameters
(inertial-flight path, heading, geo-
centric lat., etc.) Tape T+3 WD (v)
Sequential events derived from optics Sheet T+1 CD T+8 CD
Final analysis of radar supgport AFETR Report T+27 CD (b)
PRD 2L00 Requested | Date/time
Page I Item Data type Presentation delivery | received
no. (a) (a)
Engineering sequential film data
220.2 1 |35 mm from T-5 sec to 4 cameras positioned T+5 CD ™8 CD
loss of vehicle (LOV) to provide 360° cov- (partial)
erage of entire
vehicle
202.2 2 35 mm reduction print from|4 cameras positioned T+5 CD T+8 CD
T-5 sec to ICV to provide 360° cov= (partial)
erage of spacecraft
220,2 3 | 35 mm from T-5 sec to IOV |4 cameras positioned T+ CD T+8 CD
: to provide 360° cova (partial)
erage of first stage
220.5 2 | 16 mm from T-20 min to LOV|2 cameras positioned T+5 CD T+6 CD
(B and W) 90° apart to be used
to study wind effects
220.5 3 | 35 mm from T-5 sec to LOV |4 cameras positioned T45 CD T+8 CD
to provide data for (partial)
use in analyzing ve=
hicle position to LO
aKey:
CD ~ Calendar Day WD - Working Day H - Hours

bDa.ta requested but not received duwring the postlaunch reporting period,
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TABLE 7.4-I,. DATA AVAILABRILITY - Continued

PRD 2500 Requested | Date /time
Page | Item Data type Presentation delivery | received
no. (a) (a)
220.6 2 | 35 mm from T-5 sec to 1 camera to show T™+5 CD T+8 CD
T+30 sec vehicle motion for
first 15 feet of
flight
220.8 1 | 35 mm from T-5 sec to LOV | 2 cameras in tandem T™+%5 CD T+ €D
ghowing entire vehi-
cle and launcher
220.8 2 | 35 mm from T-5 sec to IOV | 2 cameras in tandem T+5 CD T+8 CD
showing entire vehi-
¢le and launcher
220.8 3 | 35 mm from t-5 sec to IOV | 2 cameras in tandem T+ CD (v)
showing entire vehi-
cle and launcher
220.9 2 | 35 mm reduction print from| 1 camera alined on T+5 CD T+8 CD
T-5 sec to T+4 min range flight azimuth
to view falling
objects
220,13 2 | 16 mm from T-30 sec to 2 views showing T+ T+12 CD |
T+5 sec spacecraft umbilical
disconnect
220.13 3 | 16 mm from T-5 sec to 3 views of space- T45 T+12 CD
T+10 sec craft during lift-off)
220,13 L | 35 mm from T-5 sec to LOV | 2 views showing IES T+5 (v)
and CM
220.13 4 | 16 mm from T-5 sec to IOV | 2 views showing LES T+5 (v)
and CM
220.10 1 |70 mm from acquisition Copies from Vero T+1 CD T+l CD
to IOV Beach, Melbourne
Beach
220,10 1 |35 mm from acquisition Copies from Vero T+5 CD T+1 CD
to IOV . Beach, Melbourne
Beach, Grand Bahama
Island, Cocoa Beach,
and Patrick AFB
220.10 1 |16 mm from acquisition Copy from Cocoa Beach| T+5 CD ™8 CD
to LOV
aKey:
CD - Calendar Day WD - Working Dey H - Hours

b

UNCLASSIFIED

Data requested but not received during the postlaunch reporting period.
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TABLE 7.4-IV, - LAUNCH-VEHICLE DATA PROCESSED
FOR MSC-HOUSTON AT MSFC

Data processed at MSFC were required between 7 and 12 calendar
dsys after launch; dates of receipt are listed in table 7.4~V

Iaunch-vehicle launchevehicle
Measurement measurement number| telemetry channel
Q-ball
Angle of attack (pitch, coarse) D133-900 P1-Bl-17
Angle of attack (pitech, fine) D134-900 P1-B1-18
Angle of sideslip (yaw, coarse) D135-900 F6-X-19-08
Angle of sideslip (ysw, fine) D136-900 P1-B1-20
Dynamic pressure (coarse) D137-900 F6-X=19-09
Dynamic pressure (fine) D138-~900 F6aX=19-10
Attitude gyro
Roll (coarse) Hok-802 F6-X-B12-08
Roll (fine) H40-802 F5-1TM-03
Yaw (coarse) H25-802 F6-X-B12-09
Yaw (fine) Hh1-802 F5=14M-02
Pitch (coarse) H26-802 F6-X-B12~10
Piteh (fine) Hio-802 F6=1U4M-02
Rate gyro
Pitch Fi2-802 F6-08
Yaw F43-802 F6-05
Roll Ful-802 F6-0U
Accelerometers

Apollo mating ring, longitudinal F210-801 83-05003
Apollo mating ring, tangential E211-801 53-05002
Apollo mating ring, perpendicular E212-801 S3-05001
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Figure 7.4-1.- Engineering sequential tracking camera locations for Apollo mission A-102,
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Figure 7.4-2,- Engineering sequential fixed camera locations for Apollo mission A-102,
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7.5 Telemetry Tape Selection and Verification

Prior to the Apollo mission A-102, a procedure was established to
assure that the best of the launch-site telemetry tapes would be selected
for processing the launch-phase telemetry data. Telemetry tapes from
four launch-site ground stations were obtained for the selection process.
They were from the Hangar S station, Telemetry Building no. 2 (Tel 2),
Telemetry Building no. 3 (Tel 3), and the Mission Control Center (MCC).

As soon as possible arfter loss of signal, copies of the Hangar S
tape were made at the Hangar S playback station, tape copies of the
Tel 2 and Tel 3 tapes were made at the Tel 2 station and taken at once
to the Hangar S playback station, and the original MCC tape was taken
to the -Hangar S playback station. Three oscillographs of selected sub-
carriers were made from each of these tapes with the identical Tormat,
galvonometer deflection, galvonometer frequency response, and discrim-
inator low-pass output filters. The IRIG standard filters and galvan-
ometers were used. The format for the three oscillograph recordings
was as follows:

No. 1 No. 2 No. 3
A-6 B-10 c-6
A-10 B-11 C-7
A-11 B-12 c-8
A-12 B-1k ¢c-10
A-13 B-16 c-11
A-1b4 c-12
A-15 C-1k
A-16 c-16

The oscillographs made from the Hangar S tape copies were compared
with the near real-time oscillographs made from the Hangar S original
tape to verify these tape copies.

The oscillographs made from the Hangar S, Tel 2, and Tel 3 tape
copies and from the MCC original tape were examined by a committee
consisting of representatives from MSC-Florida Operations and MSC-
Houston for overall signal quality, dropouts, noise content, and pos=-
sible spikes of the type exhibited in the BP-13 data (ref. 10). The
committee judged the Hangar S and Tel 3 tape copies and the MCC original
tape to be adequate for the data reduction process.
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The original MCC tape was selected from these three for data pro-
cessing for this mission. The MCC tape covered a maximum time of recep-
tion after lift-off, and the 100-pps timing signal on a separate track
was, at once, compatible with the processing equipment at MSC-Houston.
The Tel 2 tape was the least preferred because o7 a 5-second dropout
which occurred approximately 20 seconds before staging. The committee's
final judgment of the four tapes in order of preference was (1) Hangar &,

(2) Mce, (3) Tel 3, and (L) Tel 2.
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8.0 APPENDIX B
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TABLE 8.2-I.~ OPERATIONAL TEST PROCEDURES FOR APOLLO BP-15

SPACECRAFT AT CONTRACTOR'S MANUFACTURING FACILITY

OTP Title Date(iggigrmed
P-3022 LES horizontal weight and balance Mar., 12 and 13
P-3018 Forward heat-shield irstallation Apr. 7 to 13
P-5019 Beacon systems check-out Apr. 23 to 2k
P-1040 LES check-out May 14 to 18
P-9019 GSE integrated check-out Apr. 21 to 24
P-30%6 CM vertical weight and balance Apr. 20 to 22
P-203%5 CM horizontal weight and baiance Apr. 22 and 23
P-5000 ECS fill and check-out May 7 to May 22
P-10002 Test configuration checklist Apr. 23 to May 19
P-1008 Electrical power systems check-out Apr. 27 to 30 |
P-8169 Telemetry and instrumentation check-out | Apr. 30 to May 5
P-8169 (Recycle) May 8 to 14
;:iggg} Battery servicing Apr. 29 to May 28
P-3015 Adapter and SM stack and aline May 11 to 13
P-3071 CM stack and aline May 13
P-3013 LES stack and aline May 14 and 15
P-8077 Omnibeacon system check-out Apr. 23 and 24
P-0003 Integrated systems test May 18 to 25
P-5000 ECS drain and purge May 26
P-3014 Demate LES - May 27 and 28
P-3072 Demate CM May 28
P-3015 Demate M May 29
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TABLE 8.2-II.- OPFRATIONAL TEST PROCEDURES FOR APOLLO BP-15
SPACECRAFT AT FLORIDA OPERATIONS
. Date performed
C-0004 Electrical interface checks August 7
C-0005 Integrated systems check-out with
launch=-vehicle simulator July 9
C-0006 Spacecraft—launch-vehicle overall
test no. 1 (plugs in) Aug. 19
Cc-0007 Spacecraft—launch-vehicle countdown Sept. 17 and 18
C-0009 Spacecraft—launch-vehicle RFI test Aug. 2k
C~0021 Spacecraft—launch-vehicle overall
test no. 2 with ordnance in and
plugs out using swing arms Avg. 29
Cc-0028 Spacecraft—-launch-vehicle simulated
i flight test Sept. 3
C-0031 Iaunch-~vehicle sequencer malfunction -
spacecraft monitor test Aug. 12
C-00%3 Spacecraft—launch-vehicle countdown
demonstration Sept. 14 and 15
Cc-1012 Battery charge, discharge, all batteries | Sept. 16
C-304k IES total weight and center-of-gravity
determination May 21
C-3045 Buildup and assembly of LES July 1 to Aug. 3
C-3063 Spacecraft off-loading, transportation to
‘Hangar AF, and preparation for receiving
inspection June 8 to 15
C-3065 Transportation of spacecraft to launch
complex and mating of spacecraft to
launch vehicle June 26
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TABLE 8.2-11.- OPERATIONAL TEST PROCEDURE FOR APOLLO BP-15

SPACECRAFT AT FLORIDA OPERATIONS - Continued

Date performed

OTP Title (1964 )
C-3069 Mate CM and 9M assembly to insert- June 25
adapter assembly
C=-3071 Mate CM to SM July 8
C-3075 Transportation of LES to launch complex| Aug. 4
end mating of LES to CM
C-3075A Transportation of LES to launch complex| Aug. 18
and mating of LES to CM (recycle)
C-3080 Fit check of spacecrart adapter and June 9
instrument unit
C-3081 Air-conditioning barrier June 25
installation
C-308L Receiving inspection check list June 15
Cc-4058 Pyrotechnic receiving and inspection, July 9
handling, and preinstallation check-out| }Aug. 7
procedure Auvg. 26
Sept. 11
C-L065 Launch-escape motor receiving and pre- July 24, 25,and 30
installation inspection, storage, and
handling, including grain inspection
C-4066 Pitch-control motor receiving and June 15
preinstallation inspection, storage,
and handling
Cc-Lb06T Jettison motor receiving and pre- June 12
' installation inspection, storage, and June 15
handling ‘
C-5024 ECS service {.Aug. 25
July 7
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TABLE 8.2-II.- OPERATIONAL TEST PROCEDURE FOR APOLLO BP-15

SPACECRAFT AT FLORIDA OPERATIONS - Concluded

Date perrormed

OTP Title (1964 )
c-8112 Instrument system PIA procedures Continuing
C-8114A | Antenna (VSWR, test) June 29
c-8115 RF systems PIA procedure Continuing
Cc-8131 Telemetry systems test July 1 and 2
c-8132 Power and sequential PTA procedure July 23

(tower sequencer) Aug. 10, 21, 30,
and 31
Sept. 2, and 10
C-9002 Functional verification of A1L-001 June 9
launch-escape tower substitute unit
C-90%6 Water-glycol unit check-out June 23
C-9037 Ground equipment verification and GSE June 15

integrated umbilical check-out

C-10001A | Pad checklist . (a)

fPerformed in support of all launch-vehicle—spacecrart
integrated tests.
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9.0 APPENDIX C

9.1 C-Band Beacon Anomaly

Seven tracking network radar stations reported seeing two beacons
during the BP-15 spacecraft's first orbital pass over their stations.
Antigua Island and Ascension Island reported detecting the two beacons
on the spacecraft's second orbital pass. This two-beacon response was
not reported on previous Saturn launches; consequently, the report was
unexpected and resulted in some operator confusion during tracking
operations.

In all cases, the stations detecting the two beacons tracked on
the beacon " . . . farthest out in range." However, if the operator
had elected to track the "closest" beacon, tracking errors of 500 yards
would have been introduced on the first two orbital passes.

The instrument unit (IU) beacon transponder was connected to the
short-life battery bus (length of operation — approximately 40 minutes)
on previous Saturn launches, with the result that the transponder went
inoperative prior to the first orbital pass over Ascension Island. On
SA-T7, the IU beacon was connected to the long-life battery bus which
resulted in a probable operation of approximately 110 minutes.

For tracking purposes, the BP-15/SA-7 space vehicle utilized two
C-band beacon transponders: one in the IU, and the other in the space-
craft operating on adjacent frequencies (less than 1 me difference).
Two separate redundant beacons operating on the same spacecraft fre-
guency were installed within the command. module. The beacons were
interrogated by ground-tracking radars utilizing a double pulse inter-
rcgation system as shown in the following diagram.

l{.Op‘seC Pulse width = 1 wsec
(recovery time

—01 3.5 usec |[~—r

I (a) (b) o
L determined by PRF
(1538 usec or greater)

JE . T Tl
4

°}
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Pulse (a) triggers the IU beacon which returns response pulse (A)
2s shown below. Pulses (a) and (b) trigger the spacecraft transponder
which returns response pulse (B). Although the IU and spacecraft trans-
ponders operate at slightly different frequencies, both are within the
ground radar bandwidth. The 3.5-usec delay appears to the operator as
two targets 500 yards apart.

) 3,5 usec
""1(500 yds) [

] iy L

Tzble 9.1-I is a summary of selected radar reports, with Ascension
Island being the last station to see the two beacons at 1:17:56 e.s.t.
Subtracting the 1lift-off time of 11:22:43 e.s.t. from the Ascension
time- shows that the beacon became inoperable sometime after 115 minutes
after lift-off. This time compares favorably with the MSFC preliminary
estimate for operation of approximately 110 minutes.

The transponder trigger rate was telemetered to ground stations
and is shown in figure 9.1-1. Also shown are the radar pulse repetition
frequency (PRF) rates during the periods of beacon interrogation. Cor-
relation of these data indicate proper operation of the transponder.

No additional investigation of this anomaly is planned.
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Figure 9.1-1.- BP-15 spacecraft transponder interrogation and response.
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9.2 Loss of Temperature Measurement SR5877T

Temperature data from thermocouple SR58TTT failed to indicate any
change during the BP-15 spacecraft mission. The thermocouple was lo-
cated 1 inch from the rim of the nozzle on the positive pitch engine on
the instrumented RCS quad (figs. 4.8-7 to 4.8-9). The temperature
measurement indicated an output reading of approximately 4 percent of
full scale, equivalent to 104° F, and remained constant during count-
down and flight. This value could be possible during countdown but did
not agree with the expected environment indicated by other related
thermocouple measurements on the RCS quad during flight.

~ Data from the thermocouple was highly desirable because the temper-
ature of this particular area was predicted to exceed a2ll other temper-
ature measurements on the RCS quad. Also, temperature data from this
area could have been used in the investigation of the loss of data from
calorimeter no. 13 located immediately below this nozzle (fig. 4.11-2).

The instrumented RCS quad was installed on the service module on
the launch pad on June 29, 1964. A telemetry test was performed on
July 2, 1964, during which all thermocouples were thermally excited
and tested using a heat gun. All the RCS instrumentation functioned
satisfactorily at the time. The same measurement was electrically
calibrated 2 minutes before launch and did not indicate any anomaly at
the time.

Analysis of flight data did not indicate any solution to this

anomaly. The results of additional studies will be reported when avail-
able. '
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9.3 Loss of Heat Flux Data from
Calorimeter 13 (SAO553R)

Heat flux data from calorimeter 13 (SAO553R) was questionable and
hzd to be disregarded. The calorimeter was located on the SM under the
nozzle of the positive pitch engine of the instrumented RCS gquad
(fig. L4.11-2). The calorimeter gave normal response when thermally
excited by a heat gun during the simulated flight test at T-15 days and
again responded normally during electrical calibration at approximately
T-2 minutes. The calorimeter did respond to excitation at lift-off.

It failed, however, to respond at the main heat pulse during ascent,
whereas the body temperature measurement SAOS63T located inside the -
same calorimeter increased to a level above that of the other calori-
meter body temperatures. This indicated that an unmeasured heat flux
was present in this particular area of the service module. The flight
data did not give any information with respect to the time or the cause
of the failure.

The data from this calorimeter were highly desirable because this
arez was predicted to have the highest heating rate on the service
module. The same type of calorimeter in the same location on the BP-13
spacecraft also failed. Two other calorimeters failed to produce satis-
factory data on the BP-13 spacecraft flight, but performed satisfactorily
on the BP-15 spacecraft flight.

Calorimeters of two different ranges were used in both flights.
The O to 25 Btu/ftg/sec calorimeters located on the command module per-

formed satisfactorily in both flights. The O to 5 Btu/ft2/sec calori-
meters, located on the SM, differed from the calorimeter located on

the CM in size. The diaphragm of the CM calorimeter was 3.5 mils thick
with 0.150 inch unsupported diameter and that of the SM calorimeter was
2.5 mils thick with 0.250 inch unsupported diameter (fig. 9.3-1).

As g result of the failures during the BP-13 spacecraft flight,
MSC~IESD performed additional environmental tests on the smaller range
calorimeter prior to the BP-15 spacecraft flight. The test levels under
which the calorimeter specimens were subjected were based on the BP-13
spacecraft launch environment. The time duration during acoustic noise
test, however, exceeded the launch environment. None of the environ-
mental test conditions were imposed simultaneously. The following are
the environmental conditions to which the calorimeter was subjected:

UNCLASSIFIED
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a. Humidity — 100 percent at 90° F to 150° F for 18 hours
b. Vibration

(1) Parallel to the diaphragm

0.32-inch D.A.D. 10 to 60 cps
100g peak-to-peak 60 to 1,000 cps
120g peak-to-peak 1,000 to 2,020 cps

100g peak-to-peak 300 cps for 15 seconds

(2) Perpendicular to the diaphragm

0.32-inch D.A.D. 10 to 60 cps
120g peak-to-peak 60 to 2,020 cps
120g peak-to-peak 300 cps for 15 seconds

Vibration cycle time in each direction was approximately
5 minutes and 15 seconds

¢c. Acoustic noise levels

Frequency Level Time
60 to 2,400 cps 152 db 15 seconds
60 to 2,400 cps - 159 db 30 seconds
60 to 4,800 cps ' 166 db 5 minutes

6 db/octave roll-off on high side

d. Thermal shock was accomplished by alternately heating to full
output of sensor then cooling with 002 spray.

The calorimeters passed all tests and a malfunction could not be
duplicated in the laboratory.

The acoustic noise level tests were performed at Space and Informa-
tion Systems Division of North American Aviation, Inc. See reference 1l
for the test description and results.
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